Giải bài tập 16 trang 23 SGK Toán 9 tập 1 - Chân trời sáng tạo
Nhà máy luyện thép hiện có sẵn loại thép chứa 10% carbon và loại thép chứa 20% carbon. Giả sử trong quá trình luyện thép các nguyên liệu không bị hao hụt. Tính khối lượng thép mỗi loại cần dùng để luyện được 1000 tấn thép chứa 16% carbon từ hai loại thép trên.
Đề bài
Nhà máy luyện thép hiện có sẵn loại thép chứa 10% carbon và loại thép chứa 20% carbon. Giả sử trong quá trình luyện thép các nguyên liệu không bị hao hụt. Tính khối lượng thép mỗi loại cần dùng để luyện được 1000 tấn thép chứa 16% carbon từ hai loại thép trên.
Phương pháp giải - Xem chi tiết
Dựa vào đề bài để lập ra hai phương trình bậc nhất ẩn x và y
Giải hệ hai phương trình vừa tìm được theo phương pháp thế hoặc phương pháp cộng đại số.
Lời giải chi tiết
Gọi x và y lần lượt là số tấn thép của loại 10% carbon và 20% carbon cần dùng (x;y > 0).
Cần dùng để luyện được 1000 tấn thép, tan có phương trình: x + y = 1000 (1)
cần dùng chứa 16% carbon từ hai loại thép trên, ta có phương trình:
10%x + 20%y = 1000.16% (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 1000}\\{10\% x + 20\% y = 1000.16\% }\end{array}} \right.\)
Giải hệ phương trình ta được: \(\left\{ {\begin{array}{*{20}{c}}{x = 400}\\{y = 600}\end{array}} \right.\)
Vậy số tấn thép của loại 10% carbon cần dùng là 400 tấn và số tấn thép của loại 20% carbon cần dùng là 600 tấn.
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài tập 16 trang 23 SGK Toán 9 tập 1 - Chân trời sáng tạo timdapan.com"