Giải bài 9.29 trang 64 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho \(f\left( x \right) = x\sin x\) và \(g\left( x \right) = \frac{{\cos x}}{x}\). Giá trị \(\frac{{f'\left( 1 \right)}}{{g'\left( 1 \right)}}\) là


Đề bài

Cho \(f\left( x \right) = x\sin x\) và \(g\left( x \right) = \frac{{\cos x}}{x}\). Giá trị \(\frac{{f'\left( 1 \right)}}{{g'\left( 1 \right)}}\) là

A. \( - 1\).                               

B. \(\sin 1 + \cos 1\).                  

C. \(1\).                                 

D. \( - \sin 1 - \cos 1\).

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc tính đạo hàm, đạo hàm của hàm số lượng giác

\({\left( {uv} \right)^\prime } = u'.v + v'.u\)

\({\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'.v - v'.u}}{{{v^2}}}\)

Lời giải chi tiết

\(f'(x) = \sin x + x\cos x \Rightarrow f'(1) = \sin 1 + \cos 1\)

\(g'(x) = {\left( {\frac{{\cos x}}{x}} \right)^\prime } = \frac{{ - {\mathop{\rm s}\nolimits} {\rm{inx}}.x - \cos x}}{{{x^2}}} \Rightarrow g'(1) = {\left( {\frac{{\cos x}}{x}} \right)^\prime } =  - {\mathop{\rm s}\nolimits} {\rm{in1}} - \cos 1\)

\( \Rightarrow \frac{{f'(1)}}{{g'(1)}} =  - 1\)



Bài giải liên quan

Từ khóa phổ biến