Bài 3.6 trang 103 SBT hình học 12
Giải bài 3.6 trang 103 sách bài tập hình học 12. Cho hình tứ diện ABCD. Chứng minh rằng:...
Đề bài
Cho hình tứ diện ABCD. Chứng minh rằng:
a) \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AD} + \overline {BC} \)
b) \(\overrightarrow {AB} = \dfrac{1}{2}\overrightarrow {AC} + \dfrac{1}{2}\overrightarrow {AD} + \dfrac{1}{2}\overrightarrow {CD} + \overrightarrow {DB} \)
Phương pháp giải - Xem chi tiết
Xen điểm thích hợp chứng minh đẳng thức véc tơ.
Lời giải chi tiết
a) Ta có: \(\overrightarrow {AC} = \overrightarrow {AD} + \overrightarrow {DC} \)
\(\overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {CD} \)
Do đó: \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AD} + \overrightarrow {BC} \) vì \(\overrightarrow {DC} = - \overrightarrow {CD} \)
b) Vì \(\overrightarrow {AB} = \overrightarrow {AD} + \overrightarrow {DB} \) và \(\overrightarrow {AD} = \overrightarrow {AC} + \overrightarrow {CD} \) nên \(\overrightarrow {AB} = \overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {DB} \)
Do đó: \(2\overrightarrow {AB} = \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {CD} + 2\overrightarrow {DB} \)
Vậy \(\overrightarrow {AB} = \dfrac{1}{2}\overrightarrow {AC} + \dfrac{1}{2}\overrightarrow {AD} + \dfrac{1}{2}\overrightarrow {CD} + \overrightarrow {DB} \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 3.6 trang 103 SBT hình học 12 timdapan.com"