Bài 3.58 trang 133 SBT hình học 12

Giải bài 3.58 trang 133 sách bài tập hình học 12. Lập phương trình tham số của đường thẳng d đi qua điểm ...


Đề bài

Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau:

(P) Ax + By + Cz + D = 0  và (Q): A’x + B’y + C’z + D’ = 0

Phương pháp giải - Xem chi tiết

Đường thẳng \(d\) song song với hai mặt phẳng cắt nhau thì \(\overrightarrow {{u_d}}  = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right]\)

Lời giải chi tiết

Do (P) và (Q) cắt nhau nên  \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] \ne \overrightarrow 0 \).

Đường thẳng d đi qua M0 và có vecto chỉ phương \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] \) \(= \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}B\\{B'}\end{array}}&{\begin{array}{*{20}{c}}C\\{C'}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}C\\{C'}\end{array}}&{\begin{array}{*{20}{c}}A\\{A'}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}A\\{A'}\end{array}}&{\begin{array}{*{20}{c}}B\\{B'}\end{array}}\end{array}} \right|} \right)\)

\( = \left( {BC' - B'C;CA' - C'A;AB' - A'B} \right)\)

Do đó phương trình tham số của d là: 

\(\left\{ \begin{array}{l}
x = {x_0} + \left( {BC' - B'C} \right)t\\
y = {y_0} + \left( {CA' - C'A} \right)t\\
z = {z_0} + \left( {AB' - A'B} \right)t
\end{array} \right.\)

Đặc biệt phương trình trên cũng là phương trình giao tuyến của hai mặt phẳng cắt nhau (P): Ax + By + Cz + D = 0   và  (Q): A’x + B’y + C’z + D’ = 0  với M0 là điểm chung của (P) và (Q).



Từ khóa phổ biến