Bài 3.51 trang 133 SBT hình học 12

Giải bài 3.51 trang 133 sách bài tập hình học 12. Lập phương trình mặt phẳng (P) chứa đường thẳng d...


Đề bài

Lập phương trình mặt phẳng (P) chứa đường thẳng d: \(\left\{ {\matrix{{x = - 2 - t} \cr {y = 1 + 4t} \cr {z = 1 - t} \cr} } \right.\) và song song với d1: \({{x - 1} \over 1} = {{y - 1} \over 4} = {{z - 1} \over { - 3}}\)

Phương pháp giải - Xem chi tiết

Mặt phẳng  chứa đường thẳng  và song song với  nên nhận  làm VTCP.

Lời giải chi tiết

Đường thẳng d đi qua \(M(-2; 1;1)\) có vecto chỉ phương là

Đường thẳng d1 đi qua \(N(1; 1; 1)\) có vecto chỉ phương là

Ta có:   nên , suy ra d và d1 chéo nhau.

Do đó (P) là mặt phẳng đi qua M(-2; 1; 1) có vecto pháp tuyến bằng

Phương trình của (P) là: \(–8(x + 2) – 4(y – 1) – 8(z – 1) = 0\)  hay \(2x  +y + 2z + 1 = 0\).



Từ khóa phổ biến