Bài 29 trang 161 SBT toán 9 tập 1

Giải bài 29 trang 161 sách bài tập toán 9. Cho đường tròn (O), hai dây AB, CD bằng nhau và cắt nhau tại điểm I nằm bên trong đường tròn. Chứng minh rằng:...


Đề bài

Cho đường tròn \((O),\) hai dây \(AB, CD\) bằng nhau và cắt nhau tại điểm \(I\) nằm bên trong đường tròn. Chứng minh rằng:

\(a)\) \(IO\) là tia phân giác của một trong hai góc tạo bởi hai dây \(AB\) và \(CD.\)

\(b)\) Điểm \(I\) chia \(AB,\) \(CD\) thành các đoạn thẳng bằng nhau đôi một. 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức: Trong một đường tròn:

+) Hai dây bằng nhau thì cách đều tâm.

+) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

Lời giải chi tiết

\(a)\) Kẻ \(OH ⊥ AB,\) \(OK ⊥ CD\)

Ta có: \(AB = CD\;\; (gt)\)

Suy ra: \(OH = OK\) (hai dây bằng nhau cách đều tâm)

Vậy \(OI\) là tia phân giác của góc \(BID\) (tính chất đường phân giác)

\(b)\) Xét hai tam giác \(OIH\) và \(OIK,\) ta có:

+) \(\widehat {OHI} = \widehat {OKI} = 90^\circ \)

+) \(OI\) chung

+) \(OH = OK\) (chứng minh trên)

Suy ra: \(∆OIH = ∆OIK\) (cạnh huyền, cạnh góc vuông)

Suy ra: \(IH = IK      \;(1)\)

Lại có: \(HA = HB = \displaystyle {1 \over 2}AB\)

\(KC = KD =\displaystyle {1 \over 2}CD\)

Mà \(AB = CD\) nên \(HA = KC\; (2)\)

Từ \((1)\) và \((2)\) suy ra: \(IA = IC\)

Mà \(AB= CD\) nên \(IB = ID.\)



Từ khóa phổ biến