Bài 2.38 trang 79 SBT đại số và giải tích 11

Giải bài 2.38 trang 79 sách bài tập đại số và giải tích 11. Hệ số của x...


Đề bài

Hệ số của \(x^{31}\) trong khai triển của \({\left( {x + \dfrac{1}{{{x^2}}}} \right)^{40}}\) là :

A. \(9880\)              B. \(9980\)

C. \(10080\)            D. \(10980\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức khai triển nhị thức Niu-tơn \({\left( {a + b} \right)^n} = \mathop \sum \limits_{k = 0}^n C_n^k{a^{n - k}}{b^k}\) với \(a=x, b=\dfrac{1}{x^2}, n=40\).

Sử dụng các công thức nhân, chia lũy thừa cùng cơ số: \(x^m.x^n=x^{m+n}\); \(\dfrac{x^m}{x^n}=x^{m−n}\) để thu gọn biểu thức.

Để tìm hệ số của \(x^{31}\) ta cho số mũ của \(x\) bằng \(31\), giải phương trình tìm \(k\) và tính hệ số của \(x^{31}\).

Lời giải chi tiết

Ta có : \({\left( {x + \dfrac{1}{{{x^2}}}} \right)^{40}} = \sum\limits_{k = 0}^{40} {C_{40}^k} {x^{40 - k}}{\left( {\dfrac{1}{{{x^2}}}} \right)^k} \)

\(= \sum\limits_{k = 0}^{40} {C_{40}^k{x^{40 - k - 2k}} = } \sum\limits_{k = 0}^{40} {C_{40}^k{x^{40 - 3k}}} \)

Vì đề yêu cầu tìm hệ số của \(x^{31}\) khi đó \(40-3k=31\)\(\Leftrightarrow k=3\)

Vậy hệ số của \(x^{31}\) là \(C_{40}^3=9880\)

Đáp án: A.

 



Từ khóa phổ biến