Bài 1.59 trang 24 SBT hình học 12
Giải bài 1.59 trang 24 sách bài tập hình học 12. Cho khối lập phương ABCD.A'B'C'D' cạnh bằng a. Gọi M,N lần lượt là trung điểm của các cạnh AB,AD...
Đề bài
Cho khối lập phương \(ABCD.A'B'C'D'\) cạnh bằng \(a\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,AD\). Mặt phẳng \(\left( {MB'D'N} \right)\) chia khối lập phương đã cho thành hai khối đa diện. Gọi \(\left( H \right)\) là khối đa diện chứa đỉnh \(A\). Thể tích của khối đa diện \(\left( H \right)\) bằng:
A. \(\dfrac{{{a^3}}}{9}\) B. \(\dfrac{{{a^3}}}{6}\)
C. \(\dfrac{{{a^3}}}{4}\) D. \(\dfrac{{7{a^3}}}{{24}}\)
Phương pháp giải - Xem chi tiết
- Kéo dài \(B'M,D'N\) cắt \(A'A\) tại \(S\).
- Tính thể tích khối chóp \(S.A'B'D'\) và \(S.AMN\) rồi suy ra đáp số.
Lời giải chi tiết
Kéo dài \(B'M,D'N\) cắt nhau tại \(S\).
Ta có: \(\left\{ \begin{array}{l}\left( {B'MND'} \right) \cap \left( {ABB'A'} \right) = B'M\\\left( {B'MND'} \right) \cap \left( {ADD'A'} \right) = D'N\\\left( {ABB'A'} \right) \cap \left( {ADD'A'} \right) = A'A\\B'M \cap D'N = \left\{ S \right\}\end{array} \right.\) \( \Rightarrow S \in A'A\).
Lại có \(\dfrac{{SA}}{{SA'}} = \dfrac{{SN}}{{SD'}} = \dfrac{{AN}}{{A'D'}} = \dfrac{1}{2}\)\( \Rightarrow SA = \dfrac{1}{2}SA'\) hay \(A\) là trung điểm của \(SA'\) hay \(SA = A'A = a\).
Ta có: \({V_{S.AMN}} = \dfrac{1}{3}SA.{S_{AMN}}\) \( = \dfrac{1}{3}a.\dfrac{1}{2}.\dfrac{a}{2}.\dfrac{a}{2} = \dfrac{{{a^3}}}{{24}}\).
\({V_{S.A'B'D'}} = \dfrac{1}{3}SA'.{S_{A'B'D'}}\) \( = \dfrac{1}{3}2a.\dfrac{1}{2}a.a = \dfrac{{{a^3}}}{3}\).
Vậy \({V_{AMN.A'B'D'}} = {V_{S.A'B'D'}} - {V_{S.AMN}}\) \( = \dfrac{{{a^3}}}{3} - \dfrac{{{a^3}}}{{24}} = \dfrac{{7{a^3}}}{{24}}\).
Chọn D.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.59 trang 24 SBT hình học 12 timdapan.com"