Bài 1.50 trang 22 SBT hình học 12

Giải bài 1.50 trang 22 sách bài tập hình học 12. Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a...


Đề bài

Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và khoảng cách từ trọng tâm tam giác \(ABC\) đến mặt bên \(\left( {SAB} \right)\) bằng \(\dfrac{a}{4}\). Thể tích của hình chóp bằng:

A. \(\dfrac{{\sqrt 3 }}{{24}}{a^3}\)               B. \(\dfrac{{\sqrt 3 }}{{16}}{a^3}\)

C. \(\dfrac{{\sqrt 3 }}{{12}}{a^3}\)              D. \(\dfrac{{\sqrt 2 }}{{12}}{a^3}\)

Phương pháp giải - Xem chi tiết

- Dựng hình chiếu của trọng tâm tam giác \(ABC\) trên mặt phẳng \(\left( {SAB} \right)\).

- Tính chiều cao và diện tích đáy của hình chóp.

- Tính thể tích theo công thức \(V = \dfrac{1}{3}Sh\).

Lời giải chi tiết

Gọi \(N\) là trung điểm của \(AB\), \(O\) là trọng tâm tam giác \(ABC\), \(P\) là hình chiếu của \(O\) lên \(AN\).

Dễ thấy \(SO \bot \left( {ABC} \right) \Rightarrow SO \bot AB\), mà \(AB \bot CN\) nên \(AB \bot \left( {SNC} \right) \Rightarrow AB \bot OP\).

Lại có \(OP \bot SN\) nên \(OP \bot \left( {SAB} \right)\) hay \(d\left( {O,\left( {SAB} \right)} \right) = OP = \dfrac{a}{4}\).

Ta có: \(CN = \dfrac{{a\sqrt 3 }}{2}\) \( \Rightarrow ON = \dfrac{1}{3}CN = \dfrac{{a\sqrt 3 }}{6}\).

Tam giác \(SON\) vuông tại \(O\) có \(\dfrac{1}{{O{P^2}}} = \dfrac{1}{{O{N^2}}} + \dfrac{1}{{S{O^2}}}\) \( \Rightarrow \dfrac{{16}}{{{a^2}}} = \dfrac{{36}}{{3{a^2}}} + \dfrac{1}{{S{O^2}}} \Rightarrow SO = \dfrac{a}{2}\).

Diện tích tam giác \(ABC\) là \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\).

Thể tích khôi chóp \({V_{S.ABC}} = \dfrac{1}{3}SO.{S_{ABC}}\) \( = \dfrac{1}{3}.\dfrac{a}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{24}}\).

Chọn A.



Từ khóa phổ biến