Bài 123 trang 95 SBT toán 8 tập 1

Giải bài 123 trang 95 sách bài tập toán 8. Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM...


Đề bài

Cho tam giác \(ABC\) vuông tại A, đường cao AH, đường trung tuyến AM.

a. Chứng minh rằng \(\widehat {HAB} = \widehat {MAC}\)

b. Gọi \(D,\, E\) theo thứ tự là chân các đường vuông góc kẻ từ \(H\) đến \(AB,\, AC.\) Chứng minh rằng AM vuông góc với DE.

Phương pháp giải - Xem chi tiết

Hình tứ giác có ba góc vuông là hình chữ nhật.

Tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông: Trong tam giác vuông đường trung tuyến tuyến ứng với cạnh huyền bằng nửa cạnh ấy

Lời giải chi tiết

a. \(AH ⊥ BC\) (gt) \( \Rightarrow \widehat {HAB} + \widehat B = {90^0}\)

\(\widehat B + \widehat C = {90^0}\) (vì ∆ ABC có\(\widehat A = {90^0}\))

Suy ra: \(\widehat {HAB} = \widehat C\) (1)

\(∆ ABC\) vuông tại \(A\) có \(AM\) là trung tuyến thuộc cạnh huyền \(BC\)

\(⇒ AM = MC = \dfrac{1}{2} BC\) (tính chất tam giác vuông)

\(⇒ ∆ MAC\) cân tại \(M\) \( \Rightarrow \widehat {MAC} = \widehat C\) (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: \(\widehat {HAB} = \widehat {MAC}\)

b. xét tứ giác ADHE có:

\(\widehat A = {90^0}\) (gt)

\(\widehat {ADH} = {90^0}\) (vì \(HD ⊥ AB\))

\(\widehat {AEH} = {90^0}\) (vì \(HE ⊥ AC\))

Suy ra: Tứ giác \(ADHE\) là hình chữ nhật (vì có ba góc vuông)

\(⇒ ∆ ADH = ∆ EHD \,(c.c.c)\)

\( \Rightarrow {\widehat A_1} = \widehat {HED}\)

\(\widehat {HED} + {\widehat E_1} = \widehat {HEA} = {90^0}\)

Suy ra: \({\widehat E_1} + {\widehat A_1} = {90^0}\)

              \({\widehat A_1} = {\widehat A_2}\) (chứng minh trên)

 \( \Rightarrow {\widehat E_1} + {\widehat A_2} = {90^0}\)

Gọi \(I\) là giao điểm của \(AM\) và \(DE\)

Trong \(∆ AIE\) ta có:

\(\widehat {AIE} = {180^0} - \left( {{{\widehat E}_1} + {{\widehat A}_1}} \right)\) \(= {180^0} - {90^0} = {90^0}\)

\(\Rightarrow \) \(AM ⊥ DE.\)



Từ khóa phổ biến