Bài 5.4 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức

Viết các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số a) 1, (12) = 1, 121212…; b) 3, (102) = 3, 102102102…


Đề bài

Viết các số thập phân vô hạn tuần hoàn sau đây dưới dạng phân số

a) 1, (12) = 1, 121212…;                    b) 3, (102) = 3, 102102102…

Phương pháp giải - Xem chi tiết

Dựa vào công thức tính tổng cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\).

Lời giải chi tiết

a) \(1,12121212 \ldots . = 1 + 0.12 + 0.0012 + 0.000012 +  \ldots \)

\(1 + 12 \times {10^{ - 2}} + 12 \times {10^{ - 4}} + 12 \times {10^{ - 6}} +  \ldots \)

\(12 \times {10^{ - 2}} + 12 \times {10^{ - 4}} + 12 \times {10^{ - 6}} +  \ldots \)là tổng cấp số nhân lùi vô hạn có

\({u_1} = 12 \times {10^{ - 2}},\;q = {10^{ - 2}}\) 

Nên \(1,121212 \ldots  = 1 + \frac{{{u_1}}}{{1 - q}} = 1 + \frac{{12 \times {{10}^{ - 2}}}}{{1 - {{10}^{ - 2}}}} = \frac{{37}}{{33}}\)

b) \(3,102102102 \ldots  = 3 + 0.102 + 0.000102 +  \ldots \)

\( = 3 + 102 \times {10^{ - 3}} + 102 \times {10^{ - 6}} +  \ldots \)

\(102 \times {10^{ - 3}} + 102 \times {10^{ - 6}} + 102 \times {10^{ - 9}} +  \ldots \) là tổng cấp số nhân lùi vô hạn có

\({u_1} = 102 \times {10^{ - 3}},\;q = {10^{ - 3}}\)

Nên \(3,102102102 \ldots  = 1 + \frac{{{u_1}}}{{1 - q}} = 1 + \frac{{\left( {102 \times {{10}^{ - 3}}} \right)}}{{1 - {{10}^{ - 3}}}} = \frac{{1033}}{{333}}\)



Bài học liên quan

Từ khóa phổ biến