Bài 5.14 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
Cho \(f\left( x \right)\) và \(g\left( x \right)\) là các hàm số liên tục tại \(x = 1\). Biết \(f\left( 1 \right) = 2\) và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\). Tính \(g\left( 1 \right)\).
Đề bài
Cho \(f\left( x \right)\) và \(g\left( x \right)\) là các hàm số liên tục tại \(x = 1\). Biết \(f\left( 1 \right) = 2\) và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\). Tính \(g\left( 1 \right)\).
Phương pháp giải - Xem chi tiết
Giả sử hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) liên tục tại điểm \({x_0}\). Khi đó:
a) Các hàm số \(y = f\left( x \right) + g\left( x \right),\;y = f\left( x \right) - g\left( x \right),\;y = f\left( x \right).g\left( x \right)\) liên tục tại \({x_0}\)
b) Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại \({x_0}\) nếu \(g\left( {{x_0}} \right) \ne 0\)
Lời giải chi tiết
Vì \(f\left( x \right)\) và \(g\left( x \right)\) liên tục tại \(x = 1\).
Suy ra \(2f\left( 1 \right) - g\left( 1 \right) = \mathop {\lim }\limits_{x \to 1^ -} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\)
Suy ra \(g\left( 1 \right) = 1\).
Search google: "từ khóa + timdapan.com" Ví dụ: " Bài 5.14 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức timdapan.com"