Bài 3 trang 71 SGK Toán 11 tập 2 - Cánh Diều

Tìm đạo hàm của mỗi hàm số sau:


Đề bài

Tìm đạo hàm của mỗi hàm số sau:

a)     \(y = 4{x^3} - 3{x^2} + 2x + 10\)

b)    \(y = \frac{{x + 1}}{{x - 1}}\)

c)     \(y =  - 2x\sqrt x \)

d)    \(y = 3\sin x + 4\cos x - \tan x\)

e)     \(y = {4^x} + 2{e^x}\)

f)      \(y = x\ln x\)

Phương pháp giải - Xem chi tiết

Dựa vào các quy tắc tính đạo hàm để tính

Lời giải chi tiết

a)     \(y' = \left( {4{x^3} - 3{x^2} + 2x + 10} \right)' = 12{x^2} - 6x + 2\)

b)    \(y' = \left( {\frac{{x + 1}}{{x - 1}}} \right)' = \frac{{1.(x - 1) - ( - 1)(x + 1)}}{{{{(x - 1)}^2}}} = \frac{{x - 1 + x + 1}}{{{{(x - 1)}^2}}} = \frac{{2x}}{{{{(x - 1)}^2}}}\)

c)     \(y' = \left( { - 2x\sqrt x } \right)' =  - 2.\left( {1.\sqrt x  + x.\frac{1}{{2\sqrt x }}} \right) =  - 2.\left( {\frac{{x + x}}{{2\sqrt x }}} \right) =  - \frac{{2x}}{{\sqrt x }} =  - 2\sqrt x \)

d)    \(y' = \left( {3\sin x + 4\cos x - \tan x} \right)' = 3\cos x - 4\sin x + \frac{1}{{{{\cos }^2}x}}\)\( = \frac{{3{{\cos }^3}x - 4\sin x.{{\cos }^2}x + 1}}{{{{\cos }^2}x}}\)

e)     \(y' = \left( {{4^x} + 2{e^x}} \right)' = {4^x}.\ln 4 + 2{e^x}\)

f)      \(y' = \left( {x\ln x} \right)' = x'\ln x + x\left( {\ln x} \right)' = \ln x + x.\frac{1}{x} = \ln x + 1\)



Từ khóa phổ biến