Bài 21 trang 65 SGK Hình học 10 nâng cao

Chứng minh rằng nếu ba góc của tam giác ABC thỏa mãn hệ thức


Đề bài

Chứng minh rằng nếu ba góc của tam giác \(ABC\) thỏa mãn hệ thức \(\sin A = 2\sin B.\cos C\) thì \(ABC\) là tam giác cân.

Lời giải chi tiết

Áp dụng định lí sin và cosin ta có

\(\sin A = {a \over {2R}},\,\,\sin B = {b \over {2R}},\,\,\cos C = {{{a^2} + {b^2} - {c^2}} \over {2ab}}\)

Do đó \(\sin A = 2\sin B\cos C\,\,\, \Leftrightarrow \,\,{a \over {2R}} = 2.{b \over {2R}}.{{{a^2} + {b^2} - {c^2}} \over {2ab}}\,\,\,\)

\( \Leftrightarrow \,\,{a^2} = {a^2} + {b^2} - {c^2}\,\,\, \Leftrightarrow \,\,b^2 = c^2\, \Leftrightarrow \,\,b=c\)

Vậy \(ABC\) là tam giác cân.