Bài 19 trang 65 SGK Hình học 10 nâng cao

Tam giác ABC có


Đề bài

Tam giác \(ABC\) có \(\widehat A = {60^0},\,\widehat B = {45^0},\,b = 4\). Tính hai cạnh \(a\) và \(c\).

Lời giải chi tiết

Ta có \(\widehat C = {180^0} - \widehat A - \widehat B = {180^0} - {60^0} - {45^0} = {75^0}\)

Áp dụng định lí sin ta có

\(\eqalign{
& {a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}} = {4 \over {{\mathop{\rm s}\nolimits} {\rm{in4}}{5^0}}} \cr 
& {a \over {\sin {{60}^0}}} = {4 \over {{\mathop{\rm s}\nolimits} {\rm{in4}}{5^0}}}\,\,\,\, \Rightarrow \,\,a = 4.{{\sqrt 3 } \over 2}.\sqrt 2 = 2\sqrt 6 \cr 
& {c \over {{\mathop{\rm s}\nolimits} {\rm{in7}}{{\rm{5}}^0}}} = {4 \over {{\mathop{\rm s}\nolimits} {\rm{in4}}{5^0}}}\,\,\,\, \Rightarrow \,\,\,c \approx \,5,5 \cr} \)