Bài 1.12 trang 21 SGK Toán 11 tập 1 - Kết nối tri thức
Cho tam giác ABC có (hat B = {75^0};hat C = {45^0}) và (a = BC = 12;cm).
Đề bài
Cho tam giác ABC có \(\hat B = {75^0};\hat C = {45^0}\) và \(a = BC = 12\;cm\).
a) Sử dụng công thức \(S = \frac{1}{2}ab.\sin C\) và định lí sin, hãy chứng minh diện tích của tam giác \(ABC\;\)cho bởi công thức \(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\)
b) Sử dụng kết quả ở câu a và công thức biến đổi tích thành tổng, hãy tính diện tích S của tam giác ABC.
Phương pháp giải - Xem chi tiết
Sử dụng công thức: \(\sin a\sin b = \frac{1}{2}\left[ {\cos \left( {a - b} \right) - \cos \left( {a + b} \right)} \right]\)
Lời giải chi tiết
a) Theo định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \to b = \frac{{a.\sin B}}{{\sin A}}\)
Ta có:
b) Ta có: \(\hat A + \hat B + \hat C = {180^0} \Rightarrow \hat A = {180^0} - {75^0} - {45^0} = {60^0}\)
\(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}} = \frac{{{{12}^2}.\sin {{75}^0}.\sin {{45}^0}}}{{2.\sin {{60}^0}}} = \frac{{144.\frac{1}{2}.\left( {\cos {{30}^0} - \cos {{90}^0}} \right)}}{{2.\frac{{\sqrt 3 }}{2}\;}} = \frac{{72.\frac{{\sqrt 3 }}{2}}}{{\sqrt 3 }} = 36\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.12 trang 21 SGK Toán 11 tập 1 - Kết nối tri thức timdapan.com"