Bài 86 trang 172 SBT toán 9 tập 1

Giải bài 86 trang 172 sách bài tập toán 9. Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O) có đường kính CB...


Đề bài

Cho đường tròn \((O),\) đường kính \(AB,\) điểm \(C\) nằm giữa \(A\) và \(O.\) Vẽ đường tròn \((O')\) có đường kính \(CB.\)

\(a)\) Hai đường tròn \((O)\) và \((O')\) có vị trí tương đối như thế nào đối với nhau \(?\)

\(b)\) Kẻ dây \(DE\) của đường tròn \((O)\) vuông góc với \(AC\) tại trung điểm \(H\) của \(AC.\) Tứ giác \(ADCE\) là hình gì \(?\) Vì sao\(?\)

\(c)\) Gọi \(K\) là giao điểm của \(DB\) và đường tròn \((O').\) Chứng minh rằng ba điểm \(E, C, K\) thẳng hàng.

\(d)\) Chứng minh rằng \(HK\) là tiếp tuyến của đường tròn \((O').\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Nếu \(OO' = R – r\) thì đường tròn \((O)\) và đường tròn \((O')\) tiếp xúc trong.

+) Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

+) Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.

+) Hình bình hành có hai đường chéo vuông góc là hình thoi.

+) Để chứng minh ba điểm thẳng hàng, ta chứng minh ba điểm xác định được hai đường thẳng cung vuông góc với một đường thẳng thứ ba.

+) Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

+) Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn.

Lời giải chi tiết

\(a)\) Vì \(O, O'\) và \(B\) thẳng hàng nên: \(O'B < OB\)\( ⇒ O'\) nằm giữa \(O\) và \(B\)

Ta có: \(OO' = OB - O'B\)

Vậy đường tròn \((O')\) tiếp xúc trong với đường tròn \((O)\) tại \(B.\)

\(b)\) Ta có:   \(HA = HC \;\;(gt)\)

 \(AB ⊥ DE\;\; (gt)\)

Suy ra: \(HD = HE\) (đường kính vuông góc với dây cung)

Tứ giác \(ADCE\) có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành.

Lại có: \(AC ⊥ DE\)

Suy ra tứ giác \(ADCE\) là hình thoi.

\(c)\) Tam giác \(ABD\) nội tiếp trong đường tròn \((O)\) có \(AB\) là đường kính nên vuông tại \(D.\)

Suy ra: \(AD ⊥ BD\)

Tứ giác \(ADCE\) là hình thoi nên \(EC // AD\)

Suy ra: \( EC ⊥ BD \;\;\;           (1)\)

Tam giác \(BCK\) nội tiếp trong đường tròn \((O')\) có \(BC\) là đường kính nên vuông tại \(K.\)

Suy ra: \(CK ⊥ BD\;\;\;             (2)\)

Từ \((1)\) và \((2)\) suy ra \(EC\) trùng với \(CK\)

Vậy \(E, C, K\) thẳng hàng.

\(d)\) Tam giác \(DEK\) vuông tại \(K\) có \(KH\) là trung tuyến thuộc cạnh huyền \(DE\) nên:

\(HK = HE = \displaystyle{1 \over 2}DE\) (tính chất tam giác vuông)

Suy ra tam giác \(EHK\) cân tại \(H\)

Suy ra: \(\widehat {HEK} = \widehat {HKE}\) (tính chất tam giác cân)            \((3)\)

Ta có: \(O'K = O'C (= R)\) nên tam giác \(O'CK\) cân tại \(O'\)

Suy ra: \(\widehat {O'KC} = \widehat {O'CK}\) (tính chất tam giác cân)

Mà: \(\widehat {O'CK} = \widehat {HCE}\) (đối đỉnh)

Suy ra: \(\widehat {O'KC} = \widehat {HCE}\)    \( (4)\)

Từ \((3)\) và \((4)\) suy ra: \(\widehat {HKO'} = \widehat {HKE} + \widehat {O'KC}\)\( = \widehat {HEK} + \widehat {HCE}\)     \((5)\)

Tam giác \(CEH\) vuông tại \(H\) nên \(\widehat {HEK} + \widehat {HCE} = 90^\circ \) \((6)\)

Từ \((5)\) và \((6)\) suy ra: \(\widehat {HKO'} = 90^\circ \) hay \(HK ⊥ KO'\) tại \(K\)

Vậy \(HK\) là tiếp tuyến của đường tròn \((O').\)



Từ khóa phổ biến