Bài 65 trang 16 SBT toán 8 tập 2
Giải bài 65 trang 16 sách bài tập toán 8. Cho phương trình (ẩn x): 4x^2 - 25 + k^2 + 4kx = 0. a) Giải phương trình với k = 0; b) Giải phương trình với k = -3 ; ...
Cho phương trình (ẩn \(x\)): \(4{x^2} - 25 + {k^2} + 4kx = 0\)
LG a
Giải phương trình với \(k = 0.\)
Phương pháp giải:
- Thay giá trị của \(k\) vào phương trình đã cho rồi giải phương trình đó.
- Áp dụng phương pháp giải phương trình tích :
\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
Khi \(k = 0\) ta có phương trình :
\(4{x^2} - 25 = 0\)
\( \Leftrightarrow \left( {2x + 5} \right)\left( {2x - 5} \right) = 0\)
\( \Leftrightarrow 2x + 5 = 0\) hoặc \(2x - 5 = 0\)
+) Với \(\displaystyle 2x + 5 = 0 \Leftrightarrow 2x=-5 \Leftrightarrow x = - {5 \over 2}\)
+) Với \(\displaystyle 2x - 5 = 0 \Leftrightarrow 2x=5 \Leftrightarrow x = {5 \over 2}\)
Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{ - {5 \over 2} ; {5 \over 2} \right \}.\)
LG b
Giải phương trình với \(k = -3.\)
Phương pháp giải:
- Thay giá trị của \(k\) vào phương trình đã cho rồi giải phương trình đó.
- Áp dụng phương pháp giải phương trình tích :
\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
Khi \(k = -3\) ta có phương trình :
\(4{x^2} - 25 + {\left( { - 3} \right)^2} + 4\left( { - 3} \right)x = 0\)
\(\eqalign{ & \Leftrightarrow 4{x^2} - 25 + 9 - 12x = 0 \cr & \Leftrightarrow 4{x^2} - 12x - 16 = 0 \cr & \Leftrightarrow {x^2} - 3x - 4 = 0 \cr & \Leftrightarrow {x^2} - 4x + x - 4 = 0 \cr & \Leftrightarrow x\left( {x - 4} \right) + \left( {x - 4} \right) = 0 \cr & \Leftrightarrow \left( {x + 1} \right)\left( {x - 4} \right) = 0 \cr} \)
\( \Leftrightarrow x + 1 = 0\) hoặc \(x - 4 = 0\)
+) Với \(x + 1 = 0 \Leftrightarrow x = - 1\)
+) Với \(x - 4 = 0 \Leftrightarrow x = 4\)
Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{ -1; 4 \right \}.\)
LG c
Tìm các giá trị của \(k\) sao cho phương trình nhận \(x = -2\) làm nghiệm.
Phương pháp giải:
- Thay các giá trị của \(x\) vào phương trình đã cho rồi giải phương trình đó.
- Áp dụng phương pháp giải phương trình tích :
\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
Thay \(x=-2\) vào phương trình ta được :
\(\eqalign{
& 4.{\left( { - 2} \right)^2} - 25 + {k^2} + 4k.\left( { - 2} \right) = 0 \cr
& \Leftrightarrow {k^2} - 8k - 9 = 0 \cr
& \Leftrightarrow {k^2} + k - 9k - 9 = 0 \cr
& \Leftrightarrow k\left( {k + 1} \right) - 9\left( {k + 1} \right) = 0 \cr
& \Leftrightarrow \left( {k + 1} \right)\left( {k - 9} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
k + 1 = 0 \hfill \cr
k - 9 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
k = - 1 \hfill \cr
k = 9 \hfill \cr} \right. \cr} \)
Vậy \(k=9\) hoặc \(k=-1\) thì \(x=-2\) là nghiệm của phương trình.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 65 trang 16 SBT toán 8 tập 2 timdapan.com"