Bài 53 trang 37 SBT toán 8 tập 1

Giải bài 53 trang 37 sách bài tập toán 8. Đố. Đố em tìm được giá trị của x để giá trị của phân thức bằng...


Đố. Đố em tìm được giá trị của \(x\) để giá trị của phân thức \(\displaystyle {{4{x^2} - 4{x^3} + {x^4}} \over {{x^3} - 2{x^2}}}\) bằng:

LG a

-2

Phương pháp giải:

- Biến đổi phân thức về dạng đơn giản. 

- Thay giá trị phân thức bằng giá trị đã cho rồi giải để tìm giá trị của \(x\).

Lời giải chi tiết:

Điều kiện: \({x^3} - 2{x^2} = {x^2}\left( {x - 2} \right) \ne 0 \Rightarrow x \ne 0\) và \(x \ne 2\)

Vậy điều kiện là: \(x \ne 0,x \ne 2\) 

Ta có: \(\displaystyle {{4{x^2} - 4{x^3} + {x^4}} \over {{x^3} - 2{x^2}}} = {{{x^2}\left( {{x^2} - 4x + 4} \right)} \over {{x^2}\left( {x - 2} \right)}}\)\(\displaystyle  = {{{x^2}{{\left( {x - 2} \right)}^2}} \over {{x^2}\left( {x - 2} \right)}} = x - 2\)

a. Nếu phân thức đã cho bằng \(– 2\) thì biểu thức \(x – 2\) cũng có giá trị bằng \(– 2\)

Suy ra: \(x – 2 = - 2\) \(\Rightarrow x = 0\) không thỏa mãn điều kiện.

Vậy không có giá trị nào của \(x\) để phân thức bằng \(– 2\).


LG b

2

Phương pháp giải:

- Biến đổi phân thức về dạng đơn giản. 

- Thay giá trị phân thức bằng giá trị đã cho rồi giải để tìm giá trị của \(x\).

Lời giải chi tiết:

Nếu phân thức đã cho bằng \(2\) thì biểu thức \(x – 2\) cũng có giá trị bằng \(2\)

Suy ra:

\(x – 2 = 2\) \(\Rightarrow x = 4\) (thỏa mãn điều kiện)

Vậy với \(x=4\) thì phân thức có giá trị bằng \(2\).


LG c

0

Phương pháp giải:

- Biến đổi phân thức về dạng đơn giản. 

- Thay giá trị phân thức bằng giá trị đã cho rồi giải để tìm giá trị của \(x\).

Lời giải chi tiết:

Nếu phân thức có giá trị bằng \(0\) thì biểu thức \(x – 2\) cũng có giá trị bằng \(0\)

Suy ra :

\(x – 2 = 0\) \( \Rightarrow x = 2\) mà \(x = 2\) không thỏa mãn điều kiện.

Vậy không có giá trị nào của \(x\) để phân thức có giá trị bằng \(0\).



Từ khóa phổ biến