Bài 51 trang 37 SBT toán 8 tập 1

Giải bài 51 trang 37 sách bài tập toán 8. Tính giá trị của các biểu thức ...


Tính giá trị của các biểu thức:

LG a

\(\displaystyle {{3{x^2} - x} \over {9{x^2} - 6x + 1}}\) tại \(x =  - 8\)

Phương pháp giải:

- Tìm điều kiện để giá trị của phân thức xác định.

- Biến đổi phân thức về dạng đơn giản.

- Thay giá trị của biến đã cho vào phân thức rồi tìm giá trị.

Lời giải chi tiết:

Điều kiện: \(9{x^2} - 6x + 1 \ne 0 \)\(\Rightarrow {\left( {3x - 1} \right)^2} \ne 0\)\( \Rightarrow x \ne \displaystyle {1 \over 3}\).

Ta có \(x =  - 8 \ne \displaystyle {1 \over 3}\). 

Rút gọn: 

\(\displaystyle {{3{x^2} - x} \over {9{x^2} - 6x + 1}}\)\(\displaystyle  = {{x\left( {3x - 1} \right)} \over {{{\left( {3x - 1} \right)}^2}}}\)\(\displaystyle  = {x \over {3x - 1}}\)

Thay \(x =  - 8\) vào biểu thức ta có:

\(\displaystyle {{ - 8} \over {3.\left( { - 8} \right) - 1}} = {{ - 8} \over { - 24 - 1}} = {8 \over {25}}\)


LG b

\(\displaystyle {{{x^2} + 3x + 2} \over {{x^3} + 2{x^2} - x - 2}}\) tại \(x = 1000001\)

Phương pháp giải:

- Tìm điều kiện để giá trị của phân thức xác định.

- Biến đổi phân thức về dạng đơn giản.

- Thay giá trị của biến đã cho vào phân thức rồi tìm giá trị.

Lời giải chi tiết:

Ta có: \( {x^3} + 2{x^2} - x - 2\)\( = {x^2}\left( {x + 2} \right) - \left( {x + 2} \right)  \)\( = \left( {x + 2} \right)\left( {{x^2} - 1} \right)\)\( = \left( {x + 2} \right)\left( {x - 1} \right)\left( {x + 1} \right)   \)

Điều kiện: \( {x^3} + 2{x^2} - x - 2\ne 0\)\( \Rightarrow  \left( {x + 2} \right)\left( {x - 1} \right)\left( {x + 1} \right) \ne 0  \)\( \Rightarrow x \ne  - 2\) và \(x \ne  \pm 1\)

Suy ra \(x = 1000001\) thỏa mãn điều kiện.

Rút gọn:

\(\displaystyle {{{x^2} + 3x + 2} \over {{x^3} + 2{x^2} - x - 2}}\)\(\displaystyle  = {{{x^2} + 2x + x + 2} \over {\left( {x + 2} \right)\left( {x - 1} \right)\left( {x + 1} \right)}}\)\(\displaystyle  = {{\left( {x + 2} \right)\left( {x + 1} \right)} \over {\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)}} = {1 \over {x - 1}}\)

Thay \(x = 1000001\) vào biểu thức ta có: \(\displaystyle {1 \over {1000001 - 1}} = {1 \over {1000000}}\).



Từ khóa phổ biến