Bài 4.25 trang 166 SBT đại số và giải tích 11

Giải bài 4.25 trang 166 sách bài tập đại số và giải tích 11. Chứng minh rằng...


Đề bài

Cho khoảng \(K,{x_0} \in K\) và hàm số \(y = f\left( x \right)\) xác định trên \(K\backslash \left\{ {{x_0}} \right\}\)

Chứng minh rằng nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) =  + \infty \) thì luôn tồn tại ít nhất một số thuộc \(K\backslash \left\{ {{x_0}} \right\}\) sao cho \(f\left( c \right) > 0\)

Phương pháp giải - Xem chi tiết

Xem lại định nghĩa giới hạn hàm số tại đây.

Lời giải chi tiết

Vì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) =  + \infty \) nên với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\) ta luôn có \(\mathop {\lim }\limits_{n \to  + \infty } f\left( {{x_n}} \right) =  + \infty \)

Từ định nghĩa suy ra \(f\left( {{x_n}} \right)\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì \(f\left( {{x_n}} \right) > 1\) kể từ một số hạng nào đó trở đi.

Nói cách khác, luôn tồn tại ít nhất một số \({x_k} \in K\backslash \left\{ {{x_o}} \right\}\) sao cho \(f\left( {{x_k}} \right) > 1>0\).

Đặt \(c = {x_k}\) ta có \(f\left( c \right) > 0\).

Bài giải tiếp theo
Bài 4.26 trang 166 SBT đại số và giải tích 11
Bài 4.19 trang 165 SBT đại số và giải tích 11
Bài tập trắc nghiệm trang 166, 167 SBT đại số và giải tích 11

Video liên quan



Từ khóa