Bài 4.24 trang 166 SBT đại số và giải tích 11
Giải bài 4.24 trang 166 sách bài tập đại số và giải tích 11. Tính giới hạn của các hàm số sau ...
Tính giới hạn của các hàm số sau khi \(x \to + \infty \) và khi \(x \to - \infty \)
LG a
\(f\left( x \right) = {{\sqrt {{x^2} - 3x} } \over {x + 2}}\)
Phương pháp giải:
Đưa thừa số ra ngoài dấu căn và tính giới hạn.
Lời giải chi tiết:
Khi \(x \to + \infty \)
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^2} - 3x} } \over {x + 2}} = \mathop {\lim }\limits_{x \to + \infty } {{\left| x \right|\sqrt {1 - {3 \over x}} } \over {x + 2}} \cr
& = \mathop {\lim }\limits_{x \to + \infty } {{x\sqrt {1 - {3 \over x}} } \over {x + 2}} = \mathop {\lim }\limits_{x \to + \infty } {{\sqrt {1 - {3 \over x}} } \over {1 + {2 \over x}}} = 1 \cr} \)
Khi \(x \to - \infty \)
\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^2} - 3x} } \over {x + 2}} = \mathop {\lim }\limits_{x \to - \infty } {{\left| x \right|\sqrt {1 - {3 \over x}} } \over {x + 2}} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{ - x\sqrt {1 - {3 \over x}} } \over {x + 2}} = \mathop {\lim }\limits_{x \to - \infty } {{ - \sqrt {1 - {3 \over x}} } \over {1 + {2 \over x}}} = - 1 \cr}\)
LG b
\(f\left( x \right) = x + \sqrt {{x^2} - x + 1}\)
Phương pháp giải:
Đưa thừa số ra ngoài dấu căn và tính giới hạn.
Lời giải chi tiết:
Khi \(x \to + \infty \)
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } \left( {x + \sqrt {{x^2} - x + 1} } \right) \cr
& = \mathop {\lim }\limits_{x \to + \infty } \left( {x + x\sqrt {1 - {1 \over x} + {1 \over {{x^2}}}} } \right) \cr
& = \mathop {\lim }\limits_{x \to + \infty } x\left( {1 + \sqrt {1 - {1 \over x} + {1 \over {{x^2}}}} } \right) = + \infty \cr} \)
Khi \(x \to - \infty \)
\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } \left( {x + \sqrt {{x^2} - x + 1} } \right) \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{{x^2} - \left( {{x^2} - x + 1} \right)} \over {x - \sqrt {{x^2} - x + 1} }} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{x - 1} \over {x - \sqrt {{x^2} - x + 1} }} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{x - 1} \over {x - \left| x \right|\sqrt {1 - {1 \over x} + {1 \over {{x^2}}}} }} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{x - 1} \over {x + x\sqrt {1 - {1 \over x} + {1 \over {{x^2}}}} }} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{1 - {1 \over x}} \over {1 + \sqrt {1 - {1 \over x} + {1 \over {{x^2}}}} }} = {1 \over 2} \cr} \)
LG c
\(f\left( x \right) = \sqrt {{x^2} - x} - \sqrt {{x^2} + 1} \)
Phương pháp giải:
Nhân chia với biểu thức liên hợp rồi tính giới hạn.
Lời giải chi tiết:
Khi \(x \to + \infty \)
\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x} - \sqrt {{x^2} + 1} } \right) \cr
& = \mathop {\lim }\limits_{x \to + \infty } {{\left( {{x^2} - x} \right) - \left( {{x^2} + 1} \right)} \over {\sqrt {{x^2} - x} + \sqrt {{x^2} + 1} }} \cr
& = \mathop {\lim }\limits_{x \to + \infty } {{ - x - 1} \over {x\sqrt {1 - {1 \over x}} + x\sqrt {1 + {1 \over {{x^2}}}} }} \cr
& = \mathop {\lim }\limits_{x \to + \infty } {{ - 1 - {1 \over x}} \over {\sqrt {1 - {1 \over x}} + \sqrt {1 + {1 \over {{x^2}}}} }} = {{ - 1} \over 2}; \cr} \)
Khi \(x \to - \infty \)
\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} - x} - \sqrt {{x^2} + 1} } \right) \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{\left( {{x^2} - x} \right) - \left( {{x^2} + 1} \right)} \over {\sqrt {{x^2} - x} + \sqrt {{x^2} + 1} }} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{ - x - 1} \over { - x\sqrt {1 - {1 \over x}} - x\sqrt {1 + {1 \over {{x^2}}}} }} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{ - 1 - {1 \over x}} \over { - \sqrt {1 - {1 \over x}} - \sqrt {1 + {1 \over {{x^2}}}} }} = {1 \over 2} \cr}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 4.24 trang 166 SBT đại số và giải tích 11 timdapan.com"