Bài 4.22 trang 165 SBT đại số và giải tích 11
Giải bài 4.22 trang 165 sách bài tập đại số và giải tích 11. Tìm giới hạn của các hàm số sau :...
Tìm giới hạn của các hàm số sau
LG a
\(f\left( x \right) = {{{x^2} - 2x - 3} \over {x - 1}}\) khi \(x \to 3\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 2x - 3}}{{x - 1}}\) \( = \dfrac{{{3^2} - 2.3 - 3}}{{3 - 1}} = 0\)
LG b
\(h\left( x \right) = {{2{x^3} + 15} \over {{{\left( {x + 2} \right)}^2}}}\) khi \(x \to - 2\)
Lời giải chi tiết:
Ta có:
\(\mathop {\lim }\limits_{x \to - 2} \left( {2{x^3} + 15} \right)\) \( = 2.{\left( { - 2} \right)^3} + 15 = - 1 < 0\) và \(\mathop {\lim }\limits_{x \to - 2} {\left( {x + 2} \right)^2} = 0\), \({\left( {x + 2} \right)^2} > 0,\forall x \ne - 2\)
Vậy \(\mathop {\lim }\limits_{x \to - 2} \dfrac{{2{x^3} + 15}}{{{{\left( {x + 2} \right)}^2}}} = - \infty \)
LG c
\(k\left( x \right) = \sqrt {4{x^2} - x + 1} \) khi \(x \to - \infty \)
Lời giải chi tiết:
\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } \sqrt {4{x^2} - x + 1} \cr
& = \mathop {\lim }\limits_{x \to - \infty } \left| x \right|\sqrt {4 - {1 \over x} + {1 \over {{x^2}}}} \cr
& = \mathop {\lim }\limits_{x \to - \infty } \left( { - x\sqrt {4 - {1 \over x} + {1 \over {{x^2}}}} } \right) \cr &= + \infty \cr} \)
LG d
\(h\left( x \right) = {{x - 15} \over {x + 2}}\) khi \(x \to - {2^ + }\) và khi \(x \to - {2^ - }\)
Lời giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to - {2^ + }} \left( {x - 15} \right) = - 2 - 15 = - 17 < 0\) và \(\mathop {\lim }\limits_{x \to - {2^ + }} \left( {x + 2} \right) = 0\), \(x + 2 > 0,\forall x > - 2\)
Vậy \(\mathop {\lim }\limits_{x \to - {2^ + }} \dfrac{{x - 15}}{{x + 2}} = - \infty \)
Ta có: \(\mathop {\lim }\limits_{x \to - {2^ - }} \left( {x - 15} \right) = - 2 - 15 = - 17 < 0\) và \(\mathop {\lim }\limits_{x \to - {2^ - }} \left( {x + 2} \right) = 0\), \(x + 2 < 0,\forall x < - 2\)
Vậy \(\mathop {\lim }\limits_{x \to - {2^ - }} \dfrac{{x - 15}}{{x + 2}} = + \infty \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 4.22 trang 165 SBT đại số và giải tích 11 timdapan.com"