Bài 3.30 trang 163 SBT hình học 10

Giải bài 3.30 trang 163 sách bài tập hình học 10. Cho đường tròn (C)...


Đề bài

Cho đường tròn \({C_1}\left( {{F_1};2a} \right)\) cố định và một điểm \({F_2}\) cố định nằm trong \(\left( {{C_1}} \right)\).  

Xét đường tròn di động \(\left( C \right)\) có tâm \(M\). Cho biết \(\left( C \right)\) luôn đi qua \({F_2}\) và \(\left( C \right)\) luôn tiếp xúc với \(\left( {{C_1}} \right)\). Hãy chứng tỏ \(M\) di động trên một elip.

Phương pháp giải - Xem chi tiết

Chứng minh \(M{F_1} + M{F_2} = 2a\) không đổi, dử dụng định nghĩa elip suy ra điều phải chứng minh.

Lời giải chi tiết

\(C\left( {M,R} \right)\) đi qua \({F_2} \Rightarrow M{F_2} = R\)                                       (1)

\(C\left( {M,R} \right)\) tiếp xúc với \({C_1}\left( {{F_1};2a} \right) \Rightarrow M{F_1} = 2a - R\)           (2)

Lấy (1) + (2) vế với vế ta được \(M{F_1} + M{F_2} = 2a\).

Vậy \(M\) di động trên elip \((E)\) có hai tiêu điểm là \({F_1}\), \({F_2}\) và trục lớn \(2a\).



Từ khóa phổ biến