Bài 3.19 trang 171 SBT giải tích 12

Giải bài 3.19 trang 171 sách bài tập giải tích 12. Tính các tích phân sau đây:...


Tính các tích phân sau đây:

LG câu a

a) \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {x + 1} \right)\cos \left( {x + \dfrac{\pi }{2}} \right)} dx\)

Phương pháp giải:

Sử dụng phương pháp tích phân từng phần, chú ý \(\cos \left( {x + \dfrac{\pi }{2}} \right) =  - \sin x\).

Giải chi tiết:

Ta có: \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {x + 1} \right)\cos \left( {x + \dfrac{\pi }{2}} \right)} dx\) \( =  - \int\limits_0^{\dfrac{\pi }{2}} {\left( {x + 1} \right)\sin x} dx\)

Đặt \(\left\{ \begin{array}{l}u = x + 1\\dv = \sin xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \cos x\end{array} \right.\)

\( \Rightarrow I =  - \left[ { - \left. {\left( {x + 1} \right)\cos x} \right|_0^{\dfrac{\pi }{2}} + \int\limits_0^{\dfrac{\pi }{2}} {\cos xdx} } \right]\) \( =  - \left( {1 + \left. {\sin x} \right|_0^{\dfrac{\pi }{2}}} \right) =  - \left( {1 + 1} \right) =  - 2\)


LG câu b

b) \(I = \int\limits_0^1 {\dfrac{{{x^2} + x + 1}}{{x + 1}}{{\log }_2}\left( {x + 1} \right)dx} \)

Phương pháp giải:

Biến đổi \(\dfrac{{{x^2} + x + 1}}{{x + 1}}{\log _2}(x + 1)\)\( = \dfrac{1}{{\ln 2}}\left[ {x\ln (x + 1) + \dfrac{{\ln (x + 1)}}{{x + 1}}} \right]\) rồi chia thành các tích phân nhỏ, sử dụng phương pháp tích phân từng phần và đổi biến để tính.

Giải chi tiết:


Ta có: \(\dfrac{{{x^2} + x + 1}}{{x + 1}}{\log _2}(x + 1)\)\( = \left( {x + \dfrac{1}{{x + 1}}} \right).\dfrac{{\ln \left( {x + 1} \right)}}{{\ln 2}}\) \( = \dfrac{1}{{\ln 2}}\left[ {x\ln (x + 1) + \dfrac{{\ln (x + 1)}}{{x + 1}}} \right]\)

Khi đó \(I = \int\limits_0^1 {\dfrac{{{x^2} + x + 1}}{{x + 1}}{{\log }_2}\left( {x + 1} \right)dx} \) \( = \dfrac{1}{{\ln 2}}\int\limits_0^1 {x\ln \left( {x + 1} \right)dx} \) \( + \dfrac{1}{{\ln 2}}\int\limits_0^1 {\dfrac{{\ln \left( {x + 1} \right)}}{{x + 1}}dx} \)

Tính \(J = \int\limits_0^1 {x\ln \left( {x + 1} \right)dx} \).

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {x + 1} \right)\\dv = xdx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{{x + 1}}dx\\v = \dfrac{{{x^2}}}{2}\end{array} \right.\)

\( \Rightarrow J = \left. {\dfrac{{{x^2}}}{2}\ln \left( {x + 1} \right)} \right|_0^1 - \dfrac{1}{2}\int\limits_0^1 {\dfrac{{{x^2}}}{{x + 1}}dx} \) \( = \dfrac{{\ln 2}}{2} - \dfrac{1}{2}\int\limits_0^1 {\left( {x - 1 + \dfrac{1}{{x + 1}}} \right)dx} \) \( = \dfrac{1}{2}\ln 2 - \dfrac{1}{2}\left. {\left( {\dfrac{{{x^2}}}{2} - x + \ln \left( {x + 1} \right)} \right)} \right|_0^1\)

\( = \dfrac{1}{2}\ln 2 - \dfrac{1}{2}\left( {\dfrac{1}{2} - 1 + \ln 2} \right)\) \( = \dfrac{1}{4}\)

Tính \(K = \int\limits_0^1 {\dfrac{{\ln \left( {x + 1} \right)}}{{x + 1}}dx} \).

Đặt \(\ln \left( {x + 1} \right) = t \Rightarrow dt = \dfrac{{dx}}{{x + 1}}\) \( \Rightarrow K = \int\limits_0^{\ln 2} {tdt}  = \left. {\dfrac{{{t^2}}}{2}} \right|_0^{\ln 2} = \dfrac{{{{\ln }^2}2}}{2}\)

Vậy \(I = \dfrac{1}{{\ln 2}}J + \dfrac{1}{{\ln 2}}K\) \( = \dfrac{1}{{4\ln 2}} + \dfrac{{\ln 2}}{2}\).


LG câu c

c) \(I = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{{x^2} - 1}}{{{x^4} + 1}}} dx\)

Phương pháp giải:

- Nhân cả tử và mẫu của biểu thức dưới dấu tích phân với \({x^2}\).

- Đổi biến \(t = x + \dfrac{1}{x}\) và tính tích phân.

Giải chi tiết:

Đặt \(t = x + \dfrac{1}{x}\)\( \Rightarrow dt = 1 - \dfrac{1}{{{x^2}}}dx = \dfrac{{{x^2} - 1}}{{{x^2}}}dx\) và \({t^2} = {x^2} + 2 + \dfrac{1}{{{x^2}}} = \dfrac{{{x^4} + 1}}{{{x^2}}} + 2\) \( \Rightarrow \dfrac{{{x^2}}}{{{x^4} + 1}} = \dfrac{1}{{{t^2} - 2}}\).

Khi đó \(I = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{{x^2} - 1}}{{{x^4} + 1}}} dx\)\( = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{{x^2}}}{{{x^4} + 1}}.\dfrac{{{x^2} - 1}}{{{x^2}}}dx} \) \( = \int\limits_{\dfrac{5}{2}}^2 {\dfrac{{dt}}{{{t^2} - 2}}} \) \( = \dfrac{1}{{2\sqrt 2 }}\int\limits_{\dfrac{5}{2}}^2 {\left( {\dfrac{1}{{t - \sqrt 2 }} - \dfrac{1}{{t + \sqrt 2 }}} \right)dt} \)

\( = \left. {\ln \left| {\dfrac{{t - \sqrt 2 }}{{t + \sqrt 2 }}} \right|} \right|_{\dfrac{5}{2}}^2 = \dfrac{1}{{2\sqrt 2 }}\ln \dfrac{{6 - \sqrt 2 }}{{6 + \sqrt 2 }}\).


LG câu d

d) \(I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin 2xdx}}{{3 + 4\sin x - \cos 2x}}} \)

Phương pháp giải:

- Biến đổi \(\dfrac{{\sin 2x}}{{3 + 4\sin x - \cos 2x}}\)\( = \dfrac{{\sin x\cos x}}{{{{\left( {\sin x + 1} \right)}^2}}}\).

- Đổi biến \(t = \sin x\) và tính tích phân.

Giải chi tiết:

Ta có: \(\dfrac{{\sin 2x}}{{3 + 4\sin x - \cos 2x}}\) \( = \dfrac{{2\sin x\cos x}}{{3 + 4\sin x - 1 + 2{{\sin }^2}x}}\) \( = \dfrac{{\sin x\cos x}}{{{{\sin }^2} + 2\sin x + 1}}\) \( = \dfrac{{\sin x\cos x}}{{{{\left( {\sin x + 1} \right)}^2}}}\)

Khi đó \(I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x\cos x}}{{{{\left( {\sin x + 1} \right)}^2}}}dx} \).

Đặt \(\sin x = t \Rightarrow dt = \cos xdx\).

\( \Rightarrow I = \int\limits_0^1 {\dfrac{{tdt}}{{{{\left( {t + 1} \right)}^2}}}} \) \( = \int\limits_0^1 {\left( {\dfrac{1}{{t + 1}} - \dfrac{1}{{{{\left( {t + 1} \right)}^2}}}} \right)dt} \) \( = \left. {\left[ {\ln \left( {t + 1} \right) + \dfrac{1}{{t + 1}}} \right]} \right|_0^1\) \( = \ln 2 + \dfrac{1}{2} - 1 = \ln 2 - \dfrac{1}{2}\).

Bài giải tiếp theo
Bài 3.20 trang 172 SBT giải tích 12
Bài 3.21 trang 172 SBT giải tích 12
Bài 3.22 trang 172 SBT giải tích 12
Bài 3.23 trang 172 SBT giải tích 12
Bài 3.24 trang 172 SBT giải tích 12
Bài 3.25 trang 173 SBT giải tích 12
Bài 3.26 trang 173 SBT giải tích 12
Bài 3.27 trang 173 SBT giải tích 12
Bài 3.28 trang 173 SBT giải tích 12
Bài 3.29 trang 174 SBT giải tích 12

Video liên quan



Từ khóa