Bài 27 trang 78 Vở bài tập toán 7 tập 2
Giải bài 27 trang 78 VBT toán 7 tập 2. Cho G là trọng tâm của tam giác đều ABC. Chứng minh rằng GA = GB = GC...
Đề bài
Cho \(G\) là trọng tâm của tam giác đều \(ABC.\) Chứng minh rằng \(GA = GB = GC.\) (h.26)
Phương pháp giải - Xem chi tiết
Áp dụng định lí ở bài tập \(26\): Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.
Lời giải chi tiết
Gọi \(G\) là giao điểm của ba đường trung tuyến là \(AD,\,BE,\,CF.\)
Tam giác \(ABC\) đều nên nó cân tại cân tại \(A\), do đó ta có \(BE = CF\) (1).
Tam giác đều \(ABC\) cũng cân tại \(B\), do đó ta có \(AD = CF\) (2)
Từ (1) và (2) suy ra \(BE=AD=CF\) (3). Mặt khác, do \(G\) là trọng tâm của tam giác \(ABC\) nên ta còn có
\(GA = \dfrac{2}{3}AD\); \(BG = \dfrac{2}{3}BE\); \(CG = \dfrac{2}{3}CF\)
Vậy từ (3) suy ra: \(GA = GB = GC\).
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 27 trang 78 Vở bài tập toán 7 tập 2 timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 27 trang 78 Vở bài tập toán 7 tập 2 timdapan.com"