Bài 2.54 trang 86 SBT đại số và giải tích 11
Giải bài 2.54 trang 86 sách bài tập đại số và giải tích 11. Có 30 đề thi trong đó có 10 đề khó 20 đề trung bình. Xác suất để chọn ra 2 đề được ít nhất một đề trung bình là...
Đề bài
Có \(30\) đề thi trong đó có \(10\) đề khó và \(20\) đề trung bình. Xác suất để chọn ra \(2\) đề được ít nhất một đề trung bình là:
A. \(\dfrac{70}{87}\) B. \(\dfrac{71}{87}\)
C. \(\dfrac{73}{87}\) D. \(\dfrac{78}{87}\)
Phương pháp giải - Xem chi tiết
Với bài toán này ta tính xác suất bằng cách sử dụng hệ quả: Với mọi biến cố \(A\) ta có \(P(\overline{A})=1-P(A)\).
Để tính xác suất của biến cố A.
+) Tính số phần tử của không gian mẫu \(n(\Omega)\).
+) Tính số phần tử của biến cố A: \(n(A)\).
+) Tính xác suất của biến cố A: \(P(A)=\dfrac{n(A)}{n(\Omega)}\).
Trong câu này, số phần tử trong không gian mẫu là số cách chọn ra \(2\) đề là tổ hợp chập \(2\) của \(30\), số phần tử của biến cố là số cách chọn cả \(2\) đề đều là đề khó nên ta sử dụng tổ hợp để tính.
Lời giải chi tiết
Chọn ngẫu nhiên \(2\) đề trong \(30\) đề nên số phần tử của không gian mẫu là \(n(\Omega)=C_{30}^2\).
Gọi \(A\) là biến cố chọn ra hai đề được ít nhất một đề trung bình.
Nên ta có biến cố đối của \(A\) là chọn ra hai đề không có đề trung bình nào \(n(\overline{A})=C_{10}^2\) khi đó \(P(\overline{A})=\dfrac{n(\overline{A})}{n(\Omega)}=\dfrac{ C_{10}^2}{ C_{30}^2}=\dfrac{3}{29}\)
Theo hệ quả với mọi biến cố \(A\) ta có \(P(\overline{A})=1-P(A)\)
Do đó \(P\left( A \right) = 1 - P( \overline A ) \)
\(= 1 - \dfrac{3}{{29}} = \dfrac{{26}}{{29}} = \dfrac{{78}}{{87}}\)
Đáp án: D.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2.54 trang 86 SBT đại số và giải tích 11 timdapan.com"