Câu 4.4 trang 133 sách bài tập Đại số và Giải tích 11 Nâng cao

Chứng minh


Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi

\(\left\{ \matrix{
{u_1} = {1 \over 4} \hfill \cr 
{u_{n + 1}} = u_n^2 + {{{u_n}} \over 2}\,\,\,\,\,voi\,\,moi\,\,\,n \hfill \cr} \right.\)

Chứng minh rằng

 

LG a

\(0 < {u_n} \le {1 \over 4}\) với mọi n  

 

Lời giải chi tiết:

\(0 < {u_n} \le {1 \over 4}\) với mọi n     (1)

+) Với  n = 1 \({u_1} = {1 \over 4}\), (1) đúng

+) Giả sử (1) đúng với n = k ta có \(0<u_k\le {1 \over 4}\)

Ta chứng minh (1) đúng với n = k + 1

\({u_{k + 1}} = u_k^2 + {{{u_k}} \over 2} = {u_k}.\left( {{u_k} + {1 \over 2}} \right)  \le {1 \over 4}\)

\(\left( {do\,\,0 < {u_k} \le {1 \over 4}} \right)\)

Vậy (1) đã được chứng minh.

 

LG b

 \({{{u_{n + 1}}} \over {{u_n}}} \le {3 \over 4}\)với mọi n

Từ đó suy ra \(\lim {u_n} = 0\)

 

Lời giải chi tiết:

\({{{u_{n + 1}}} \over {{u_n}}} = {u_n} + {1 \over 2} \le {1 \over 4} + {1 \over 2} = {3 \over 4}\) với mọi n

Từ đó suy ra 

\(\eqalign{
& {u_2} \le {3 \over 4}{u_1} \cr 
& {u_3} \le {3 \over 4}{u_2} \le {\left( {{3 \over 4}} \right)^2}{u_1},... \cr 
& 0 \le {u_n} < {\left( {{3 \over 4}} \right)^{n - 1}}{u_1} = {1 \over 4}{\left( {{3 \over 4}} \right)^{n - 1}} \cr} \)

\(\lim {{1 \over 4}{\left( {{3 \over 4}} \right)^{n - 1}} } = 0\)

Theo nguyên lý kẹp ta có \(\lim {u_n} = 0\)

 
Bài giải tiếp theo
Câu 4.5 trang 134 sách bài tập Đại số và Giải tích 11 Nâng cao
Câu 4.6 trang 134 sách bài tập Đại số và Giải tích 11 Nâng cao

Video liên quan



Từ khóa