Câu 3.23 trang 89 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho dãy số


Cho dãy số \(({u_n}),\)với \({u_n} = \sin (2n - 1){\pi  \over 3}.\)

LG a

Chứng minh rằng \({u_n} = {u_{n + 3}}\)  với mọi \(n \ge 1.\)

Lời giải chi tiết:

\({u_{n + 3}} = \sin \left[ {\left( {2\left( {n + 3} \right) - 1} \right){\pi  \over 3}} \right] \)

              \(= \sin \left[ {\left( {2n - 1} \right){\pi  \over 3} + 2\pi } \right]\)

              \(= \sin \left[ {\left( {2n - 1} \right){\pi  \over 3}} \right] = {u_n}\)


LG b

 Hãy tính tổng 17 số hàng đầu tiên của dãy số đã cho.

Lời giải chi tiết:

Từ kết quả của phần a), ta có

\(\eqalign{
& {u_1} = {u_4} = {u_7} = {u_{10}} = {u_{13}} = {u_{16}} \cr 
& {u_2} = {u_5} = {u_8} = {u_{11}} = {u_{14}} = {u_{17}} \cr 
& {u_3} = {u_6} = {u_9} = {u_{12}} = {u_{15}} \cr} \)

Từ đó, kí hiệu \({S_{17}}\) là tổng cần tính, ta có

\({S_{17}} = 5\left( {{u_1} + {u_2} + {u_3}} \right) + {u_1} + {u_2}\)                          (1)

Bằng cách tình trực tiếp, ta có \({u_1} = {{\sqrt 3 } \over 2},{u_2} = 0\) và \({u_3} =  - {{\sqrt 3 } \over 2}.\) Do đó, từ (1) ta được

                                \({S_{17}} = 5\left( {{{\sqrt 3 } \over 2} + 0 - {{\sqrt 3 } \over 2}} \right) + {{\sqrt 3 } \over 2} + 0 = {{\sqrt 3 } \over 2}\)



Bài giải liên quan

Từ khóa phổ biến