Câu 15 trang 213 SGK Giải tích 12 Nâng cao

Tính diện tích các hình phẳng giới hạn bởi các đường


Tính diện tích các hình phẳng giới hạn bởi các đường

LG a

y + x2 = 0 và y + 3x2 = 2

Giải chi tiết:

Phương trình hoành độ giao điểm của hai đường cong là:

-x2 = 2 – 3x2 ⇔ x = 1 ⇔ x = ± 1

Diện tích cần tìm là:

\(\eqalign{
& S = \int\limits_{ - 1}^1 {| - {x^2} - (2 - 3{x^2})|dx = \int\limits_{ - 1}^1 {|2{x^2} - 2|dx} } \cr 
& = \int\limits_{ - 1}^1 {(2 - 2{x^2})dx = (2x - {2 \over 3}{x^3})|_{ - 1}^1} = {8 \over 3} \cr} \)


LG b

y2 – 4x = 4 và 4x – y = 16

Giải chi tiết:

Ta có:

\(\eqalign{
& {y^2} - 4x = 4 \Leftrightarrow x = {{{y^2} - 4} \over 4} \cr 
& 4x - y = 16 \Leftrightarrow x = {{y + 16} \over 4} \cr} \) 

Phương trình tung độ giao điểm của hai đường cong là:

\({y^2} - 4 = y + 16 \Leftrightarrow {y^2} - y - 20 = 0 \Leftrightarrow \left[ \matrix{
y = - 4 \hfill \cr 
ý = 5 \hfill \cr} \right.\) 

Diện tích cần tìm là:

\(\eqalign{
& S = \int\limits_{ - 4}^5 {|{{{y^2} - 4} \over 4} - {{y + 16} \over 4}|dy} \cr 
& = {1 \over 4}\int\limits_{ - 4}^5 {|{y^2} - y - 20|dy = {1 \over 4}\int\limits_{ - 4}^5 {( - {y^2} + y + 20)dy} } \cr 
& = {1 \over 4}( - {{{y^3}} \over 3} + {{{y^2}} \over 2} + 20y)|_{ - 4}^5 = {{243} \over 8} \cr} \)