Bài 1 trang 125 SGK Hình học 11

Giải bài 1 trang 125 SGK Hình học 11. Trong mặt phẳng tọa độ Oxy, cho các điểm A (1; 1), B(0; 3), C(2; 4) .Xác định ảnh của tam giác ABC qua các phép biến hình sau.


Trong mặt phẳng tọa độ \(Oxy\), cho các điểm \(A (1; 1), B(0; 3), C(2; 4)\) .Xác định ảnh của tam giác \(ABC\) qua các phép biến hình sau.

LG a

Phép tịnh tiến theo vectơ \(\overrightarrow v  = (2; 1)\).

Phương pháp giải:

Sử dụng biểu thức tọa độ của các phép biến hình.

Lời giải chi tiết:

Trong phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( {2;1} \right)\) thì các đỉnh \(A, B, C\) có ảnh là các điểm tương ứng \(A’, B’, C’\).

Từ biểu thức tọa độ

\(\left\{ \matrix{
x' = 2 + x \hfill \cr 
y' = 1 + y \hfill \cr} \right.\)

Ta có:

\(A(1; 1) ⇒ A’(3; 2)\)

\(B(0; 3) ⇒ B’(2; 4)\)

\(C(2; 4) ⇒ C’ (4; 5)\)

Tam giác \(A’B’C’\), ảnh của tam giác \(ABC\) trong phép tịnh tiến theo vectơ \(\overrightarrow v\) là tam giác có ba đỉnh \(A’(3; 2), B’(2; 4), C’(4; 5)\)

Dễ thấy đỉnh \(B’\) của \(∆A’B’C’\) trùng với đỉnh \(C\) của \(∆ABC\).


LG b

Phép đối xứng qua trục \(Ox\)

Phương pháp giải:

Sử dụng biểu thức tọa độ của các phép biến hình.

Lời giải chi tiết:

Qua phép đối xứng trục \(Ox\), biểu thức tọa độ là :

\(\left\{ \matrix{
x' = x \hfill \cr 
y' = - y \hfill \cr} \right.\)

Do đó ta có: \(∆ A’B’C’\) có các đỉnh \(A’(1; -1), B’(0; -3), C’(2; -4)\)


LG c

Phép đối xứng qua tâm \(I(2;1)\).

Phương pháp giải:

Sử dụng biểu thức tọa độ của các phép biến hình.

Lời giải chi tiết:

Trong phép đối xứng qua tâm \(I(2; 1)\), đỉnh \(A→ A’\) thì \(I\) là trung điểm của \(AA’\). Gọi tọa độ \(A’\) là \((x; y)\) thì:

\(\eqalign{
& 2 = {{1 + x} \over 2} \Rightarrow x = 3 \cr 
& 1 = {{1 + y} \over 2} \Rightarrow y = 1 \cr} \) 

\(⇒ A’(3; 1)\)

Tương tự, ta có ảnh \(B’, C’\) của các đỉnh \(B, C\) là \(B’(4; -1), C’(2; -2)\)


LG d

Phép quay tâm \(O\) góc \(90^0\).

Phương pháp giải:

Sử dụng biểu thức tọa độ của các phép biến hình.

Lời giải chi tiết:

Trong phép quay tâm \(O\), góc quay \(90^0\) thì tia \(Ox\) biến thành tia \(Oy\), tia \(Oy\) biến thành tia \(Ox\)

Điểm \(A(1; 1) → A’(-1; 1)\)

           \(B(0; 3) → B’(-3; 0)\)

           \(C(2; 4) → C’(-4; 2)\)


LG e

Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trục \(Oy\) và phép vị tự tâm \(O\) tỉ số \(k = -2\)

Phương pháp giải:

Sử dụng biểu thức tọa độ của các phép biến hình.

Lời giải chi tiết:

Trong phép đổi xứng qua \(Oy\). \(∆ABC\) biến thành \(∆A_1B_1C_1\), ta có:

          \(A(1; 1) → A_1(-1; 1)\)

           \(B(0; 3) → B_1(0; 3)\)

           \(C(2; 4) → C_1(-2; 4)\)

Với phép vị tự tâm \(O\) tỉ số \(k = -2\) thì \(∆A_1B_1C_1 → ∆A’B’C’\)

           \(A_1(-1; 1) → A’(2; -2)\)

          \(B_1(0; 3) → B’(0; -6)\)

          \(C_1(-2; 4) → C’(4; -8)\)

Vậy trong phép đồng dạng đã cho thì \(∆ABC\) có ảnh là \(∆A’B’C’\) với  \(A’(2; -2), B’(0; -6), C’(4; -8)\)

 



Từ khóa phổ biến