Bài 57 trang 130 Sách bài tập Hình học lớp 12 Nâng cao

Viết phương trình tham số hoặc chính tắc của đường thẳng d biết :


Viết phương trình tham số hoặc chính tắc của đường thẳng d biết :

LG a

d là giao tuyến của hai mặt phẳng

\(\left( \alpha  \right):x - 3y + z = 0\) và \(\left( {\alpha '} \right):x + y - z + 4 = 0\)

Lời giải chi tiết:

Cách 1. Điểm M(x; y; z)\( \in d\) khi tọa độ của M là nghiệm của hệ

\(\left\{ \matrix{  x - 3y + z = 0 \hfill \cr  x + y - z + 4 = 0 \hfill \cr}  \right.\)

Đặt y=t ta có \(\left\{ \matrix{  x + z = 3t \hfill \cr  x - z =  - 4 - t \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  x =  - 2 + t \hfill \cr  z = 2 + 2t. \hfill \cr}  \right.\)

Vậy phương trình tham số của d là :

\(\left\{ \matrix{  x =  - 2 + t \hfill \cr  y = t \hfill \cr  z = 2 + 2t. \hfill \cr}  \right.\)

Cách 2. Ta tìm một điểm thuộc đường thẳng d bằng cách cho y=0 trong hệ \(\left(  *  \right).\)

Ta có hệ \(\left\{ \matrix{  x + z = 0 \hfill \cr  x - z =  - 4 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  x =  - 2 \hfill \cr  z = 2. \hfill \cr}  \right.\)

Vậy điểm \({M_0}( - 2;0;2)\) thuộc đường thẳng d.

Vectơ chỉ phương của đường thẳng d là

\(\overrightarrow u  = \left( {\left| \matrix{   - 3 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr   - 1 \hfill \cr}  \right|;\left| \matrix{  1 \hfill \cr   - 1 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{  1 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{   - 3 \hfill \cr  1 \hfill \cr}  \right|} \right) = (2;2;4)\)

Vậy phương trình tham số của d là

\(d:\left\{ \matrix{  x =  - 2 + 2t \hfill \cr  y = 2t \hfill \cr  z = 2 + 4t. \hfill \cr}  \right.\)


LG b

d là giao tuyến của mặt phẳng \(y-2z+3=0\) với mặt phẳng tọa độ (Oyz).

Lời giải chi tiết:

Mặt phẳng (Oyz): \(x=0\) tương tự câu a ta tìm được giao tuyến d có phương trình là:

\(\;d:\left\{ \matrix{  x = 0 \hfill \cr  y =  - 3 + 2t \hfill \cr  z = t. \hfill \cr}  \right.\)



Bài giải liên quan

Từ khóa phổ biến