Bài 45 trang 214 SGK Đại số 10 Nâng cao

Chứng minh rằng:


Chứng minh rằng:

LG a

\({{\sin \alpha  - \sin \beta } \over {\cos \alpha  - \cos \beta }} =  - \sqrt 3 \) nếu 

\(\left\{ \matrix{
\alpha + \beta = {\pi \over 3} \hfill \cr 
\cos \alpha \ne \cos \beta \hfill \cr} \right.\)

Phương pháp giải:

Sử dụng các công thức:

\(\begin{array}{l}
\sin \alpha - \sin \beta = 2\cos \frac{{\alpha + \beta }}{2}\sin \frac{{\alpha - \beta }}{2}\\
\cos \alpha - \cos \beta = - 2\sin \frac{{\alpha + \beta }}{2}\sin \frac{{\alpha - \beta }}{2}
\end{array}\)

Lời giải chi tiết:

\(\eqalign{
& {{\sin \alpha - \sin \beta } \over {\cos \alpha - \cos \beta }} \cr&= {{2\cos {{\alpha + \beta } \over 2}\sin {{\alpha - \beta } \over 2}} \over { - 2\sin {{\alpha + \beta } \over 2}\sin {{\alpha - \beta } \over 2}}} \cr 
& = \frac{{\cos \frac{{\alpha  + \beta }}{2}}}{{\sin \frac{{\alpha  + \beta }}{2}}}= - \cot {{\alpha + \beta } \over 2} \cr& =  - \cot \frac{{\frac{\pi }{3}}}{2} =  - \cot \frac{\pi }{6} =  - \sqrt 3  \cr} \)

(Do \(\alpha + \beta = {\pi \over 3}\))


LG b

\({{\cos \alpha  - \cos 7\alpha } \over {\sin 7\alpha  - sin\alpha }} = \tan 4\alpha \) (khi các biểu thức có nghĩa)

Lời giải chi tiết:

\({{\cos \alpha  - \cos 7\alpha } \over {\sin 7\alpha  - sin\alpha }}\)

\( = \frac{{ - 2\sin \frac{{\alpha  + 7\alpha }}{2}\sin \frac{{\alpha  - 7\alpha }}{2}}}{{2\cos \frac{{7\alpha  + \alpha }}{2}\sin \frac{{7\alpha  - \alpha }}{2}}} \)

\(= \frac{{ - 2\sin 4\alpha \sin \left( { - 3\alpha } \right)}}{{2\cos 4\alpha \sin 3\alpha }}\)

\( = {{2\sin 4\alpha \sin 3\alpha } \over {2\cos 4\alpha \sin 3\alpha }}\)

\( = \frac{{\sin 4\alpha }}{{\cos 4\alpha }}= \tan 4\alpha \)



Bài học liên quan

Từ khóa phổ biến