Để chuẩn bị cho kỳ thi chọn học sinh giỏi, Vndoc.com xin giới thiệu đến các bạn: Đề thi học sinh giỏi Giải toán trên Máy tính cầm tay cấp tỉnh Gia Lai môn Toán lớp 12 GDTX (2010 - 2011).

Đề thi học sinh giỏi môn Toán:

SỞ GIÁO DỤC VÀ ĐÀO TẠO
GIA LAI

(Đề thi chính thức)

KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
GIẢI TOÁN TRÊN MÁY TÍNH CẦM TAY
NĂM HỌC 2010 - 2011
MÔN: TOÁN LỚP 12 THPT HỆ GDTX

(Thời gian làm bài 150 phút không kể thời gian giao đề)


Bài 1:
(5 điểm).

Tìm tọa độ các điểm cực trị của đồ thị hàm số

Bài 2: (5 điểm).

Cho hình thang ABCD có đường chéo AC = 7, BD = 5, cạnh đáy CD = 1, góc giữa hai đường th ẳng AC và BD bằng 150. Tính độ dài cạnh đáy AB.

Bài 3: (5 điểm).

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = sinx + 2cosx + 1

Bài 4: (5 điểm).

Tính gần đúng nghiệm (độ, phút, giây) của phương trình: sin2x + 3cosx - 2 = 0

Bài 5: (5 điểm).

Tìm tọa độ các giao điểm của hai đường tròn:

(C1): x2 + y2 - 2x + 4y - 4 = 0 và (C2): x2 + y2 + 2x - 2y - 14 = 0

Bài 6: (5 điểm).

Cho hai đường tròn có bán kính bằng nhau và bằng 1, chúng đi qua tâm của nhau. Tính diện tích phần chung của hai hình tròn đó.

Bài 7: (5 điểm).

Tính các cạnh của hình hộp chữ nhật biết thể tích của nó bằng 15,625; diện tích toàn phần bằng 62,5 và các cạnh lập thành một ấp số nhân.

Bài 8: (5 điểm).

Một ngân hàng đề thi có 100 câu hỏi, mỗi đề thi có 5 câu. Một học sinh đã học thuộc 80 câu. Tính xác suất để học sinh đó rút ngẫu nhiên một đề thi, trong đó có 4 câu đã học thuộc.

Bài 9: (5 điểm).

Trong mặt phẳng tọa độ Oxy, cho elip . Tìm tọa độ điểm M thuộc (E) nhìn đoạn nối hai tiêu điểm dưới góc 600

Bài 10: (5 điểm).

Cho dãy số {Xn}, n thuộc N* được xác định như sau: x1 = 2/3 và

Tính tổng của 2010 số hạng đầu tiên.

Nếu bạn không thấy đề thi được hiển thị. Vui lòng tải về để xem. Nếu thấy hay thì các bạn đừng quên chia sẻ cho bạn bè nhé!