Giải mục 2 trang 63, 64 SGK Toán 11 tập 1 - Kết nối tri thức

Cho mẫu số liệu ghép nhóm về chiều cao của 21 cây na giống Chiều cao (cm) (left[ {0;5} right)) (left[ {5;10} right)) (left[ {10;15} right)) (left[ {15;20} right)) Số cây (3) (8) (7) (3) Gọi ({X_1},;{X_2},; ldots ,;{X_{21}}) là chiều cao của các cây giống, đã được sắp xếp theo thứ tự tăng dần. Khi đó, ({X_1},;;...,{X_3}) thuộc (left[ {0;5} right),;{X_4},; ldots ,{X_{11}}) thuộc (left[ {5;10} right), ldots ) Hỏi trung vị thuộc nhóm nào?


Hoạt động 2

Cho mẫu số liệu ghép nhóm về chiều cao của 21 cây na giống

Gọi \({X_1},\;{X_2},\; \ldots ,\;{X_{21}}\) là chiều cao của các cây giống, đã được sắp xếp theo thứ tự tăng dần. Khi đó, \({X_1},\;\;...,{X_3}\) thuộc \(\left[ {0;5} \right),\;{X_4},\; \ldots ,{X_{11}}\) thuộc \(\left[ {5;10} \right), \ldots \) Hỏi trung vị thuộc nhóm nào?

Phương pháp giải:

Trung vị của mẫu số liệu ghép nhóm xấp xỉ cho trung vị của mẫu số liệu gốc, nó chia mẫu số liệu thành hai phần, mỗi phần chứ 50% giá trị.

Lời giải chi tiết:

Cỡ mẫu \(n = 3 + 8 + 7 + 3 = 21\).

Suy ra trung vị là \({x_{11}}\) thuộc nhóm [5; 10).


Luyện tập 2

Ghi lại tốc độ bóng trong 200 lần giao bóng của một vận động viên môn quần vợt cho kết quả như bảng bên.

Tốc độ v (km/h)

Số lần

   \(150 \le v < 155\)

               \(18\)

   \(155 \le v < 160\)

               \(28\)

   \(160 \le v < 165\)

               \(35\)

   \(165 \le v < 170\)

               \(43\)

   \(170 \le v < 175\)

               \(41\)

   \(175 \le v < 180\)

               \(35\)

Tính trung vị của mẫu số liệu ghép nhóm này.

Phương pháp giải:

Để tính trung vị của mẫu số liệu ghép nhóm, ta làm như sau:

Bước 1: Xác định nhóm chưa trung vị. Giả sử đó là nhóm thứ \(p:\left[ {{a_p};\;{a_{p + 1}}} \right)\).

Bước 2: Trung vị là \({M_e} = {a_p} + \frac{{\frac{n}{2} - \left( {{m_1} +  \ldots  + {m_{p - 1}}} \right)}}{{{m_p}}}.\;\left( {{a_{p - 1}} - {a_p}} \right),\).

Trong đó n là cỡ mẫu, \({m_p}\)là tần số nhóm p. Với \(p = 1\), ta quy ước \({m_1} +  \ldots  + {m_{p - 1}} = 0\).

Lời giải chi tiết:

Cỡ mẫu là \(n = 18 + 28 + 35 + 43 + 43 + 41 + 35 = 200\).

Gọi \({x_1},{x_2}, \ldots ,{x_{200}}\) là tốc độ giao bóng của 200 lần và giả sử dãy này được sắp xếp theo thứ tự tăng dần. Khi đó trung vị là \(\frac{{{x_{100}} + {x_{101}}}}{2}\).

Do hai giá trị \({x_{100}},\;{x_{101}}\)thuộc nhóm [165;170) nên nhóm này chứa trung vị.

Suy ra , \(p = 4;{a_4} = 165;{m_4} = 43;\;{m_1} + {m_2} + {m_3} = 18 + 28 + 35 = 81;{a_5} - {a_4} = 5\).

Ta có: \({M_e} = 165 + \frac{{\frac{{200}}{2} - 81}}{{43}}.5 = 167.21\).



Bài học liên quan

Từ khóa phổ biến