Bài 8 trang 6 SBT toán 9 tập 1

Giải bài 8 trang 6 sách bài tập toán 9. Chứng minh ...1 + 2 + 3....


Đề bài

Chứng minh :

\(\eqalign{
& \sqrt {{1^3} + {2^3}} = 1 + 2; \cr 
& \sqrt {{1^3} + {2^3} + {3^3}} = 1 + 2 + 3; \cr 
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} = 1 + 2 + 3 + 4. \cr} \)

Viết tiếp một số đẳng thức tương tự.

Phương pháp giải - Xem chi tiết

Tính gá trị của vế trái và giá trị vế phải của mỗi đẳng thức. So sánh hai giá trị để chứng mình đẳng thức đúng.

Từ các đẳng thức đã chứng minh ta tìm quy luật để suy ra đẳng thức tương tự.

Lời giải chi tiết

Ta có : \(\sqrt {{1^3} + {2^3}}  = \sqrt {1 + 8}  = \sqrt 9  = 3\)

Và \(1 + 2 = 3\)

Vậy \(\sqrt {{1^3} + {2^3}}  = 1 + 2\)

Ta có : 

\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3}} = \sqrt {1 + 8 + 27} \cr 
& = \sqrt {36} = 6 \cr} \)

Vậy \(\sqrt {{1^3} + {2^3} + {3^3}}  = 1 + 2 + 3\)

Ta có : 

\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr 
& = \sqrt {1 + 8 + 27 + 64} \cr 
& = \sqrt {100} = 10 \cr} \)

Và \(1 + 2 + 3 + 4 = 10\)

Vậy 

\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr 
& = 1 + 2 + 3 + 4 \cr} \)

Một số đẳng thức tương tự:

\(\sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3}} \)\(= 1 + 2 + 3 + 4 + 5 \)

\(\sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3} +{6^3}}\)

\(= 1 + 2 + 3 + 4 + 5 +6 \).