Giải bài 4 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho a, b, c theo thứ tự lập thành cấp số cộng. Chứng minh: \({a^2} - {c^2} = 2ab - 2bc\).
Đề bài
Cho a, b, c theo thứ tự lập thành cấp số cộng. Chứng minh: \({a^2} - {c^2} = 2ab - 2bc\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khái niệm cấp số cộng để tính: Cấp số cộng là một dãy số (vô hạn hoặc hữu hạn) mà trong đó, kể từ số hạng thứ hai, mỗi số hạng đều bằng tổng của số hạng đứng ngay trước nó với một số d không đổi, nghĩa là: \({u_{n + 1}} = {u_n} + d\) với \(n \in \mathbb{N}*\). Số d được gọi là công sai của cấp số cộng.
Lời giải chi tiết
Vì a, b, c theo thứ tự lập thành cấp số cộng nên: \(b - a = c - b \Leftrightarrow {\left( {b - a} \right)^2} = {\left( {c - b} \right)^2}\)
\( \Leftrightarrow {a^2} - 2ab + {b^2} = {b^2} - 2bc + {c^2} \Leftrightarrow {a^2} - {c^2} = 2ab - 2bc\)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 4 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1 timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 4 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1 timdapan.com"