Bài tập cuối chương 1 - SBT Toán 11 CTST
Giải câu hỏi trắc nghiệm trang 32, 33 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Trên đường tròn lượng giác, góc lượng giác \(\frac{{13\pi }}{7}\) có cùng điểm biểu diễn với góc lượng giác nào sau đây?
A. \(\frac{{6\pi }}{7}\).
B. \(\frac{{20\pi }}{7}\).
Giải bài 1 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho \(\sin \alpha = \frac{3}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \). Tính giá trị của các biểu thức sau:
a) \(\sin 2\alpha \);
b) \(\cos \left( {\alpha + \frac{\pi }{3}} \right)\);
Giải bài 2 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn và xét tính chẵn, lẻ của mỗi hàm số đó.
a) \(y = 3\sin x + 2\tan \frac{x}{3}\);
b) \(y = \cos x\sin \frac{{\pi - x}}{2}\).
Giải bài 3 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Chứng minh các đẳng thức lượng giác sau:
a) \({\sin ^2}\left( {x + \frac{\pi }{8}} \right) - {\sin ^2}\left( {x - \frac{\pi }{8}} \right) = \frac{{\sqrt 2 }}{2}\sin 2x\);
b) \({\sin ^2}y + 2\cos x\cos y\cos \left( {x - y} \right) = {\cos ^2}x + {\cos ^2}\left( {x - y} \right)\).
Giải bài 4 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải các phương trình lượng giác sau:
a) \(\cos \left( {2x - \frac{\pi }{3}} \right) + \sin x \) \( = 0\);
b) \({\cos ^2}\left( {x + \frac{\pi }{4}} \right) \) \( = \frac{{2 + \sqrt 3 }}{4}\);
c) \(\cos \left( {3x + \frac{\pi }{6}} \right) + 2{\sin ^2}x \) \( = 1\)
Giải bài 5 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Vận tốc \({v_1}\left( {cm/s} \right)\) của con lắc đơn thứ nhất và vận tốc \({v_2}\left( {cm/s} \right)\) của con lắc đơn thứ hai theo thời gian t (giây) được cho bởi các công thức:
\({v_1}\left( t \right) \) \( = - 4\cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right)\) và \({v_2}\left( t \right) \) \( = 2\sin \left( {2t + \frac{\pi }{6}} \right)\)
Xác định các thời điểm t mà tại đó:
a) Vận tốc của con lắc đơn thứ nhất bằng 2cm/s.
b) Vận tốc của con lắc đơn thứ nhất gấp hai lần vận tốc củ