Bài 3. Hàm số liên tục - SBT Toán 11 CTST
Giải bài 1 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Dùng định nghĩa, xét tính liên tục của hàm số:
a) \(f\left( x \right) = {x^3} - 3x + 2\) tại điểm \(x = - 2\);
b) \(f\left( x \right) = \sqrt {3x + 2} \) tại điểm \(x = 0\).
Giải bài 2 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xét tính liên tục của mỗi hàm số sau tại điểm \(x = 2\):
a) \(f\left( x \right) = \left\{ \begin{array}{l}6 - 2x\;\;\;khi\;x \ge 2\\2{x^2} - 6\;\;khi\;x < 2\end{array} \right.\);
b) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}\;\;\;khi\;x \ne 2\\\;\;\;\;0\;\;\;\;\;\;khi\;x = 2\end{array} \right.\).
Giải bài 3 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xét tính liên tục của hàm số:
a) \(f\left( x \right) = \left| {x + 1} \right|\) tại điểm \(x = - 1\);
b) \(g\left( x \right) = \left\{ \begin{array}{l}\frac{{\left| {x - 1} \right|}}{{x - 1}}\;\;\;khi\;x \ne 1\\\;\;\;\;1\;\;\;\;\;\;khi\;x = 1\end{array} \right.\) tại điểm \(x = 1\).
Giải bài 4 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {x + 2} - 2}}{{x - 2}}\;khi\;x \ne 2\\\;\;\;\;a\;\;\;\;\;\;\;\;\;\;\;khi\;x = 2\end{array} \right.\). Tìm giá trị của tham số a để hàm số \(y = f\left( x \right)\) liên tục tại \(x = 2\).
Giải bài 5 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xét tính liên tục của các hàm số sau:
a) \(f\left( x \right) = {x^3} - {x^2} + 2\);
b) \(f\left( x \right) = \frac{{x + 1}}{{{x^2} - 4x}}\);
c) \(f\left( x \right) = \frac{{2x - 1}}{{{x^2} - x + 1}}\)
d) \(f\left( x \right) = \sqrt {{x^2} - 2x} \).
Giải bài 6 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xét tính liên tục của các hàm số sau:
a) \(f\left( x \right) = \frac{{\tan x}}{{\sqrt {1 - {x^2}} }}\);
b) \(f\left( x \right) = \frac{1}{{\sin x}}\).
Giải bài 7 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho hai hàm số \(f\left( x \right) = x - 1\) và \(g\left( x \right) = {x^2} - 3x + 2\). Xét tính liên tục của các hàm số:
a) \(y = f\left( x \right).g\left( x \right)\);
b) \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\);
c) \(y = \frac{1}{{\sqrt {f\left( x \right) + g\left( x \right)} }}\).
Giải bài 8 trang 91 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho hai hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2 - x\;\;\;khi\;x < 1\\{x^2} + x\;khi\;x \ge 1\end{array} \right.\) và \(g\left( x \right) = \left\{ \begin{array}{l}2x - {x^2}\;khi\;x < 1\\ - {x^2} + a\;khi\;x \ge 1\end{array} \right.\).
Tìm giá trị của tham số a sao cho \(h\left( x \right) = f\left( x \right) + g\left( x \right)\) liên tục tại \(x = 1\).
Giải bài 9 trang 91 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{x^2} + ax + b\;khi\;\left| x \right| < 2\\x\left( {2 - x} \right)\;\;\;\;\,khi\;\left| x \right| \ge 2\end{array} \right.\). Tìm giá trị của các tham số a và b sao cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Giải bài 10 trang 91 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Chứng minh rằng phương trình:
a) \({x^3} + 2x - 1 = 0\) có nghiệm thuộc khoảng \(\left( { - 1;1} \right)\);
b) \(\sqrt {{x^2} + x} + {x^2} = 1\) có nghiệm thuộc khoảng \(\left( {0;1} \right)\).
Giải bài 11 trang 91 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Trong mặt phẳng tọa độ Oxy, cho đường tròn \(\left( C \right):{x^2} + {\left( {y - 1} \right)^2} = 1\). Với mỗi số thực m, gọi Q(m) là số giao điểm của đường thẳng \(d:y = m\) với đường tròn (C). Viết công thức xác định hàm số \(y = Q\left( m \right)\). Hàm số này không liên tục tại các điểm nào?
Giải bài 12 trang 91 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho nửa đường tròn đường kính \(AB = 2\). Đường thẳng d thay đổi luôn đi qua A, cắt nửa đường tròn tại C và tạo với đường thẳng AB góc \(\alpha \left( {0 < \alpha < \frac{\pi }{2}} \right)\). Kí hiệu diện tích tam giác ABC là \(S\left( \alpha \right)\) (phụ thuộc vào \(\alpha \)). Xét tính liên tục của hàm số \(S\left( \alpha \right)\) trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\) và tính các giới hạn \(\mathop {\lim }\limits_{\alpha \to {0^ + }} S\left( \alpha \right)\);