Bài 3.27 trang 131 SBT đại số và giải tích 11
Giải bài 3.27 trang 131 sách bài tập đại số và giải tích 11. Cho dãy số với ...
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( { - 3} \right)^{2n - 1}}.\)
LG a
Chứng minh dãy số \(\left( {{u_n}} \right)\) là cấp số nhân. Nêu nhận xét về tính tăng, giảm của dãy số
Phương pháp giải:
Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân thì \({u_{n + 1}} = q{u_n}\) với \(q\) không đổi.
Xét hiệu \({u_{n + 1}} - {u_n}\) suy ra tính tăng giảm của dãy số.
Lời giải chi tiết:
Ta có: \(\dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{{{\left( { - 3} \right)}^{2\left( {n + 1} \right) - 1}}}}{{{{\left( { - 3} \right)}^{2n - 1}}}}\) \( = \dfrac{{{{\left( { - 3} \right)}^{2n + 1}}}}{{{{\left( { - 3} \right)}^{2n - 1}}}} = 9\)
Suy ra \(\left( {{u_n}} \right)\) là cấp số nhân có \({u_1} = - 3,q = 9.\)
Xét hiệu \(H = {u_{n + 1}} - {u_n} = {\left( { - 3} \right)^{2n + 1}} - {\left( { - 3} \right)^{2n - 1}}\)\({\rm{ = }}{\left( { - 3} \right)^{2n}}\left[ {{{\left( { - 3} \right)}^1} - {{\left( { - 3} \right)}^{ - 1}}} \right]\) \( = {9^n}\left( { - \dfrac{8}{3}} \right) < 0\)
Vậy dãy số giảm.
LG b
Lập công thức truy hồi của dãy số
Phương pháp giải:
Sử dụng định nghĩa cấp số nhân \({u_{n + 1}} = q{u_n}\)
Lời giải chi tiết:
Công thức truy hồi \(\left\{ \begin{array}{l}{u_1} = - 3\\{u_{n + 1}} = 9.{u_n}{\rm{ voi }}n \ge 1.\end{array} \right.\)
LG c
Hỏi số \( - 19683\) là số hạng thứ mấy của dãy số ?
Phương pháp giải:
Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\)
Lời giải chi tiết:
Ta có: \( - 19683 = \left( { - 3} \right){.9^{n - 1}} \Leftrightarrow n = 5\).
Vậy \( - 19683\) là số hạng thứ năm.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 3.27 trang 131 SBT đại số và giải tích 11 timdapan.com"