Bài 3.1, 3.2 phần bài tập bổ sung trang 10 SBT toán 9 tập 2
Giải bài 3.1, 3.2 phần bài tập bổ sung trang 10 sách bài tập toán 9. Tìm a và b để hệ ax+by=17 và 3bx+ay=-29 có nghiệm là (x;y)=(1; -4) ...
Bài 3.1
Tìm \(a\) và \(b\) để hệ
\(\left\{ {\matrix{
{ax + by = 17} \cr
{3bx + ay = - 29} \cr} } \right.\)
có nghiệm là \((x; y) = (1; -4)\)
Phương pháp giải:
Sử dụng:
- Cặp số \(({x_0};{y_0})\) là nghiệm của hệ phương trình
\(\left\{ {\matrix{
{ax + by = c} \cr
{a'x +b'y = c'} \cr} } \right.\)
\( \Leftrightarrow \left\{ {\matrix{
{a{x_0} + b{y_0} = c} \cr
{a'{x_0} +b'{y_0} = c'} \cr} } \right.\)
- Cách giải hệ phương trình bằng phương pháp thế (coi \(a, b\) là ẩn):
+ Bước 1: Rút \(a\) hoặc \(b\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.
+ Bước 2: Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.
Lời giải chi tiết:
Để \((x; y) = (1; -4)\) là nghiệm của hệ phương trình đã cho, ta thay \(x = 1;\)\( y = -4\) vào hệ phương trình ta có:
\(\eqalign{
& \left\{ {\matrix{
{a - 4b = 17} \cr
{3b - 4a = - 29} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr
{3b - 4\left( {4b + 17} \right) = - 29} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr
{3b - 16b - 68 = - 29} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr
{ - 13b = 39} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr
{b = - 3} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{a = 5} \cr
{b = - 3} \cr} } \right. \cr} \)
Vậy \(a = 5; b = -3.\)
Bài 3.2
Giải hệ phương trình:
\(\left\{ {\matrix{
{2x - y = 5} \cr
{\left( {x + y + 2} \right)\left( {x + 2y - 5} \right) = 0} \cr} } \right.\)
Phương pháp giải:
Sử dụng:
- Cách giải phương trình tích:
\(A(x).B(x) = 0 \Leftrightarrow \left[ \begin{gathered}
A(x) = 0 \hfill \\
B(x) = 0 \hfill \\
\end{gathered} \right.\)
- Cách giải hệ phương trình bằng phương pháp thế :
+ Bước 1: Rút \(x\) hoặc \(y\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.
+ Bước 2: Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.
Lời giải chi tiết:
Ta có
\((x + y + 2)(x + 2y - 5) = 0 \\ \Leftrightarrow \left[ \begin{gathered}
x + y + 2 = 0 \hfill \\
x + 2y - 5 = 0 \hfill \\
\end{gathered} \right.\)
Khi đó ta có thể viết hệ đã cho thành hai hệ phương trình:
\(\left\{ {\matrix{
{2x - y = 5} \cr
{x + y + 2 = 0} \cr} } \right.\)
hoặc
\(\left\{ {\matrix{
{2x - y = 5} \cr
{x + 2y - 5 = 0} \cr} } \right.\)
Giải hệ:
\(\left\{ {\matrix{
{2x - y = 5} \cr
{x + y + 2 = 0} \cr} } \right.\\ \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{x + 2x - 5 + 2 = 0} \cr} } \right.\)
\(\eqalign{
& \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{3x - 3 = 0} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{x = 1} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = - 3} \cr
{x = 1} \cr} } \right. \cr} \)
Giải hệ:
\(\left\{ {\matrix{
{2x - y = 5} \cr
{x + 2y - 5 = 0} \cr} } \right. \\ \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{x + 2\left( {2x - 5} \right) - 5 = 0} \cr} } \right.\)
\(\eqalign{
& \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{5x - 15 = 0} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr
{x = 3} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = 1} \cr
{x = 3} \cr} } \right. \cr} \)
Vậy hệ phương trình đã cho có hai nghiệm:
\(\left( {{x_1};{y_1}} \right) = \left( {1; - 3} \right)\) ; \(\left( {{x_2};{y_2}} \right) = \left( {3;1} \right)\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 3.1, 3.2 phần bài tập bổ sung trang 10 SBT toán 9 tập 2 timdapan.com"