Bài 1.10 trang 14 SBT đại số và giải tích 11

Giải bài 1.10 trang 14 sách bài tập đại số và giải tích 11. Tập xác định của hàm số y...


Đề bài

Tập xác định của hàm số \(y = \dfrac{{\sqrt {1 - 2\cos x} }}{{\sqrt 3  - \tan x}}\) là

A. \(\mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi } \right\}\)

B. \(\mathbb{R}\backslash \left( { - \dfrac{\pi }{3} + k2\pi ;\dfrac{\pi }{3} + k2\pi } \right)\)

C. \(\mathbb{R}\backslash \left\{ {\left\{ {\dfrac{\pi }{3} + k2\pi } \right\} \cup \left\{ {\dfrac{\pi }{2} + k2\pi } \right\}} \right\}\)

D. \(\mathbb{R}\backslash \left\{ {\left( { - \dfrac{\pi }{3} + k2\pi ;\dfrac{\pi }{3} + k2\pi } \right] \cup \left\{ {\dfrac{\pi }{2} + k\pi } \right\}} \right\}\)

Phương pháp giải - Xem chi tiết

Hàm số \(y = \dfrac{{f(x)}}{{g(x)}}\) xác định khi \(g(x) \ne 0\).

Hàm số \(y = \sqrt {f(x)} \) xác định khi \(f(x) \ge 0\).

Lời giải chi tiết

Hàm số \(y = \dfrac{{\sqrt {1 - 2\cos x} }}{{\sqrt 3  - \tan x}}\) không xác định khi

\(\left\{ \begin{array}{l}1 - 2\cos x < 0\\\tan x = \sqrt 3 \\\cos x = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - \dfrac{\pi }{3} + k2\pi  < x < \dfrac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \dfrac{\pi }{3} + k\pi ,k \in \mathbb{Z}\\x = \dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}\end{array} \right.\)

Vậy tập xác định là \(\) \(\mathbb{R}\backslash \left\{ {\left( { - \dfrac{\pi }{3} + k2\pi ;\dfrac{\pi }{3} + k2\pi } \right] \cup \left\{ {\dfrac{\pi }{2} + k\pi } \right\}} \right\}\)

Đáp án: D.

 



Từ khóa phổ biến