Bài 108 trang 153 SBT toán 7 tập 1
Giải bài 108 trang 153 sách bài tập toán 7 tập 1. Bạn Mai vẽ tia phân giác của một góc như sau: Đánh dấu trên hai cạnh của bốn góc bốn đoạn thẳng bằng nhau ...
Đề bài
Bạn Mai vẽ tia phân giác của một góc như sau: Đánh dấu trên hai cạnh của bốn góc bốn đoạn thẳng bằng nhau: \(OA = AB = OC = CD\) (hình 72). Kẻ các đoạn thẳng \(AD, BC\), chúng cắt nhau ở \(K\). Hãy giải thích vì sao \(OK\) là tia phân giác của góc \(O.\)
Hướng dẫn: Chứng minh rằng:
a) \(∆OAD = ∆OCB\)
b) \(∆KAB = ∆KCD\)
Phương pháp giải - Xem chi tiết
- Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.
- Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.
- Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
Lời giải chi tiết
a) \(OA = AB = OC = CD\)
\( \Rightarrow OC+CD=OA+AB\)
\( \Rightarrow OD=OB\)
Xét \(∆OAD\) và \(∆OCB\) ta có:
\(OA = OC\) (gt)
\(\widehat O\) chung
\(OD = OB\) (chứng minh trên)
\( \Rightarrow ∆OAD = ∆OCB \) (c.g.c)
b) \(∆OAD = ∆OCB\)
\( \Rightarrow \widehat D = \widehat B\) (hai góc tương ứng)
\( \Rightarrow \widehat {{C_1}} = \widehat {{A_1}}\) (hai góc tương ứng)
Lại có: \(\widehat {{C_1}} + \widehat {{C_2}} = 180^\circ \) (hai góc kề bù)
\(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (hai góc kề bù)
\( \Rightarrow \widehat {{C_2}} = \widehat {{A_2}}\)
Xét \(∆KCD\) và \(∆KAB\) có:
\(\widehat D = \widehat B\) (chứng minh trên)
\(CD = AB\) (gt)
\(\widehat {{C_2}} = \widehat {{A_2}}\) (chứng minh trên)
\( \Rightarrow ∆KCD = ∆KAB\) (g.c.g)
\( \Rightarrow KC = KA\) (hai cạnh tương ứng).
Xét \(∆OCK\) và \(∆OAK\) có:
\(OC = OA\) (gt)
\(OK\) cạnh chung
\(KC = KA\) (chứng minh trên)
\( \Rightarrow ∆OCK = ∆OAK\) (c.c.c)
\( \Rightarrow \widehat {{O_1}} = \widehat {{O_2}}\) (hai góc tương ứng)
Vậy \(OK\) là tia phân giác của góc \(O\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 108 trang 153 SBT toán 7 tập 1 timdapan.com"