Bài 103 trang 22 SBT toán 9 tập 1
Giải bài 103 trang 22 sách bài tập toán 9. Chứng minh x - căn x +1 =...+ 3/4... Giá trị đó đạt được khi x bằng bao nhiêu?
Đề bài
Chứng minh:
\(x - \sqrt x + 1 = {\left( {\sqrt x - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}}\) với \(x > 0\)
Từ đó, cho biết biểu thức \(\dfrac{1}{{x - \sqrt x + 1}}\) có giá trị lớn nhất là bao nhiêu ?
Giá trị đó đạt được khi \(x\) bằng bao nhiêu?
Phương pháp giải - Xem chi tiết
Sử dụng hằng đẳng thức \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)
Sau đó biện luận để tìm giá trị lớn nhất.
Lời giải chi tiết
Ta có: \({\left( {\sqrt x - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}}\)\( = x - \sqrt x + {\dfrac{1}{4}} + {\dfrac{3}{4}} = x - \sqrt x + 1\)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Ta có: \({\dfrac{1}{x - \sqrt x + 1}} = {\dfrac{1}{{{\left( {\sqrt x - {\dfrac{1}{2}}} \right)}^2} + {\dfrac{3}{4}}}}\) có giá trị lớn nhất khi và chỉ khi \({\left( {\sqrt x - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4}\) nhỏ nhất.
Vì \({\left( {\sqrt x - {\dfrac{1}{2}}} \right)^2} \ge 0\) nên \({\left( {\sqrt x - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}} \ge \dfrac{3}{4}\)
Ta có \({\left( {\sqrt x - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}} \ge {\dfrac{3}{4}}\) nhỏ nhất bằng \({\dfrac{3}{4}}.\)
Khi đó: \({\dfrac{1}{x - \sqrt x + 1}} \le \ \dfrac{1}{{\dfrac{3}{4}}} \le \ {\dfrac{4 }{3}}\)
Dấu "=" xảy ra khi:
\(\sqrt x - {\dfrac{1}{2}} = 0 \Rightarrow x = {\dfrac{1}{4}}\)
Vậy \({\dfrac{1}{x - \sqrt x + 1}}\) có giá trị lớn nhất bằng \(\dfrac{4 }{3}\) khi \(x = {\dfrac{1 }{4}}\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 103 trang 22 SBT toán 9 tập 1 timdapan.com"