Bài 1 trang 100 SBT toán 7 tập 2
Giải bài 1 trang 100 sách bài tập toán 7. Giả sử x=a/m, y=b/m...
Đề bài
Giả sử \(x = \dfrac{a}{m};y = \dfrac{b}{m}\,\left( {a,b,m \in Z,m > 0} \right)\) và \(x < y.\) Hãy chứng tỏ rằng nếu chọn \(z = \dfrac{{2a + 1}}{{2m}}\) thì ta có \(x < z < y.\)
Phương pháp giải - Xem chi tiết
Đưa các phân số về cùng mẫu rồi so sánh các tử số với nhau: Trong hai phân số cùng mẫu dương, phân số nào có tử lớn hơn thì lớn hơn.
Lời giải chi tiết
Ta có \(x < y \Rightarrow \dfrac{a}{m} < \dfrac{b}{m} \Leftrightarrow a < b\)
Lại có: \(x = \dfrac{a}{m} = \dfrac{{2a}}{{2m}};y = \dfrac{b}{m} = \dfrac{{2b}}{{2m}}\)
Vì \(a < b\left( {a,b \in Z} \right) \Leftrightarrow a + 1 \le b\) hay \(2a + 2 \le 2b\)
Suy ra \(2a < 2a + 1 < 2a + 2 \le 2b\) hay \(2a < 2a + 1 < 2b\)
Do đó \(\dfrac{{2a}}{{2m}} < \dfrac{{2a + 1}}{{2m}} < \dfrac{{2b}}{{2m}}\)
Suy ra \(x < z < y.\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1 trang 100 SBT toán 7 tập 2 timdapan.com"