Đề kiểm tra 15 phút - Đề số 2 - Bài 6 - Chương 4 - Đại số 9

Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 6 - Chương 4 - Đại số 9


Đề bài

Bài 1: Không giải phương trình, chứng tỏ phương trình \(2{x^2} - 3x - 6 = 0\) có hai nghiệm phân biệt \(x_1; x_2\). Tính \(x_1^3 + x_2^3.\)

Bài 2: Tìm m để phương trình \({x^2} - 2x + m = 0\) có hai nghiệm phân biệt và cùng dương.

Bài 3: Tìm m để phương trình \({x^2} + 2x + m = 0\) có hai nghiệm \(x_1; x_2\) thỏa mãn \(3{x_1} + 2{x_2} = 1.\)

Lời giải chi tiết

Bài 1: Ta có các hệ số : \(a = 2; b = − 3; c = − 6\). Vì \(ac = 2.\left( { - 6} \right) < 0 \Rightarrow \Delta  = {b^2} - 4ac > 0\) nên phương trình có hai nghiệm phân biệt \(x_1; x_2\). Theo định lí Vi-ét, ta có :

\({x_1} + {x_2} = {3 \over 2};\,\,\,\,\,{x_1}{x_2} =  - 3\)

Vậy \(x_1^3 + x_2^3 = {\left( {{x_1} + {x_2}} \right)^3} \)\(\;- 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = {{135} \over 8}.\)

Bài 2: Phương trình có hai nghiệm phân biệt và cùng dương

\( \Leftrightarrow \left\{ \matrix{  \Delta ' > 0 \hfill \cr  P > 0 \hfill \cr  S > 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  1 - m > 0 \hfill \cr  m > 0 \hfill \cr  2 > 0 \hfill \cr}  \right. \)\(\;\Leftrightarrow 0 < m < 1.\)

Bài 3: Phương trình có nghiệm khi và chỉ khi \(\Delta ' \ge 0 \Leftrightarrow 1 - m \ge 0 \Leftrightarrow m \le 1\). Theo định lí Vi-ét, ta có : \({x_1} + {x_2} =  - 2\) và \(x_1.x_2=m\)

Xét hệ : \(\left\{ \matrix{  {x_1} + {x_2} =  - 2 \hfill \cr  3{x_1} + 2{x_2} = 1 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {x_1} = 5 \hfill \cr  {x_2} =  - 7 \hfill \cr}  \right.\)

Vậy \(x_1. x_2=m\)\(\; \Leftrightarrow 5.( - 7) = m \Leftrightarrow m =  - 35\) ( thỏa mãn điều kiện \(m ≤ 1\)).

 



Từ khóa phổ biến