Câu 14 trang 115 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 14 trang 115 Sách bài tập Hình học 11 Nâng cao
Đề bài
Cho tứ diện ABCD. Lấy các điểm M, N, P. Q lần lượt thuộc AB, BC, CD, DA sao cho
\(\overrightarrow {AM} = {1 \over 3}\overrightarrow {AB} ,\overrightarrow {BN} = {2 \over 3}\overrightarrow {BC},\)
\(\overrightarrow {AQ} = {1 \over 2}\overrightarrow {A{\rm{D}}} ,\overrightarrow {DP} = k\overrightarrow {DC}. \)
Hãy xác định k để bốn điểm P, Q, M, N cùng nằm trên một mặt phẳng.
Lời giải chi tiết
Cách 1
Từ \(\overrightarrow {AM} = {1 \over 3}\overrightarrow {AB} \) ta có \(\overrightarrow {BM} = {2 \over 3}\overrightarrow {BA} \) , mặt khác \(\overrightarrow {BN} = {2 \over 3}\overrightarrow {BC} \) nên MN // AC.
Nếu có k để các điểm M, N, P, Q thuộc một mặt phẳng thì mp(MNQ) cắt mp(ACD) theo giao tuyến PQ nên PQ // AC.
Mặt khác \(\overrightarrow {AQ} = {1 \over 2}\overrightarrow {A{\rm{D}}} \) nên \(\overrightarrow {DP} = {1 \over 2}\overrightarrow {DC} \).
Vậy \(k = {1 \over 2}\) thì các điểm M, N, P, Q cùng thuộc một mặt phẳng.
Cách 2:
Đặt \(\overrightarrow {DA} = \overrightarrow a ,\overrightarrow {DB} = \overrightarrow b ,\overrightarrow {DC} = \overrightarrow c \) .
Khi đó \(\overrightarrow {BC} = \overrightarrow c - \overrightarrow b ,\overrightarrow {AB} = \overrightarrow b - \overrightarrow a \).
Do \(\overrightarrow {AM} = {1 \over 3}\overrightarrow {AB} \)
nên
$$\eqalign{
& \overrightarrow {AM} = {1 \over 3}\left( {\overrightarrow b - \overrightarrow a } \right) = - {1 \over 3}\overrightarrow a + {1 \over 3}\overrightarrow b \cr
& \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {BN} = \overrightarrow b - \overrightarrow a + {2 \over 3}\left( {\overrightarrow c - \overrightarrow b } \right) \cr
& = - \overrightarrow a + {1 \over 3}\overrightarrow b + {2 \over 3}\overrightarrow c \cr
& \overrightarrow {AP} = \overrightarrow {A{\rm{D}}} + \overrightarrow {DP} = - \overrightarrow a + k\overrightarrow {DC} = - \overrightarrow a + k\overrightarrow c \cr
& \overrightarrow {AQ} = - {1 \over 2}\overrightarrow a \cr} $$
Khi đó
\(\eqalign{ & \overrightarrow {MN} = - {2 \over 3}\overrightarrow a + {2 \over 3}\overrightarrow c \cr & \overrightarrow {MP} = - {2 \over 3}\overrightarrow a - {1 \over 3}\overrightarrow b + k\overrightarrow c \cr & \overrightarrow {MQ} = - {1 \over 6}\overrightarrow a - {1 \over 3}\overrightarrow b \cr} \)
Các điểm M, N, P, Q thuộc một mặt phẳng khi và chỉ khi có số x, y sao cho
\(\eqalign{& \overrightarrow {MP} = x\overrightarrow {MN} + y\overrightarrow {MQ} \cr & \Leftrightarrow - {2 \over 3}\overrightarrow a - {1 \over 3}\overrightarrow b + k\overrightarrow c \cr & = - {2 \over 3}x\overrightarrow a + {2 \over 3}x\overrightarrow c - {1 \over 6}y\overrightarrow a - {1 \over 3}y\overrightarrow b \cr} \)
Do \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng nên điều đó tương đương với:
\(\eqalign{ & \left\{ \matrix{ - {2 \over 3}x - {1 \over 6}y = - {2 \over 3} \hfill \cr - {1 \over 3}y = - {1 \over 3} \hfill \cr {2 \over 3}x = k \hfill \cr} \right. \cr & \Rightarrow y = 1,x = {3 \over 4},k = {1 \over 2} \cr} \)
Vậy khi \(k = {1 \over 2}\) thì các điểm M, N, P, Q thuộc cùng một mặt phẳng.
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 14 trang 115 Sách bài tập Hình học 11 Nâng cao timdapan.com"