Bài 8 trang 17 SGK Hình học 10
Giải bài 8 trang 17 SGK Hình học 10. Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.
Đề bài
Cho lục giác \(ABCDEF\). Gọi \(M, N, P, Q, R, S\) lần lượt là trung điểm của các cạnh \(AB, BC, CD, DE, EF, FA\). Chứng minh rằng hai tam giác \(MPR\) và \(NQS\) có cùng trọng tâm.
Lời giải chi tiết
\(MN\) là đường trung bình của tam giác \(ABC\) nên ta có:
\(\overrightarrow {MN} = {1 \over 2}\overrightarrow {AC} \)
Tương tự ta có:
\(\eqalign{
& \overrightarrow {PQ} = {1 \over 2}\overrightarrow {CE} \cr
& \overrightarrow {RS} = {1 \over 2}\overrightarrow {EA} \cr} \)
\(\eqalign{
& \Rightarrow \overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RS} \cr&= {1 \over 2}\left( {\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {EA} } \right)\cr& = {1 \over 2}\overrightarrow {AA} = \overrightarrow 0 \cr
& \Rightarrow \overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RS} = \overrightarrow 0 (1) \cr
& \cr} \)
Gọi \(G\) là trong tâm của tam giác \(MPR\), ta có:
\(\overrightarrow {GM} + \overrightarrow {GP} + \overrightarrow {GR} = \overrightarrow 0 (2)\)
Mặt khác :
\(\eqalign{
& \overrightarrow {MN} = \overrightarrow {MG} + \overrightarrow {GN} \cr
& \overrightarrow {PQ} = \overrightarrow {PG} + \overrightarrow {GQ} \cr
& \overrightarrow {RS} = \overrightarrow {RG} + \overrightarrow {GS} \cr} \)
\(\Rightarrow \overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RS} \)\( = \left( {\overrightarrow {MG} + \overrightarrow {PG} + \overrightarrow {RG} } \right) + \overrightarrow {GN} + \overrightarrow {GQ} \)\( + \overrightarrow {GS} (3)\)
Từ (1),(2), (3) suy ra: \(\overrightarrow {GN} + \overrightarrow {GQ} + \overrightarrow {GS} = \overrightarrow 0 \)
Vậy \(G\) là trọng tâm của tam giác \(NQS.\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 8 trang 17 SGK Hình học 10 timdapan.com"