Bài 77 trang 155 SGK Đại số 10 nâng cao

Chứng minh các bất đẳng thức sau:


Chứng minh các bất đẳng thức sau:

LG a

\(a + b + c \ge \sqrt {ab}  + \sqrt {bc}  + \sqrt {ca} \) với a ≥ 0; b ≥ 0; c ≥ 0     

Phương pháp giải:

Nhân cả 2 vế bđt với 2 và biến đổi tương đương.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& a + b + c \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ca} \cr 
& \Leftrightarrow 2a + 2b + 2c - 2\sqrt {ab} - 2\sqrt {bc} - 2\sqrt {ca} \ge 0 \cr 
& \Leftrightarrow (a - 2\sqrt {ab} + b) + (b - 2\sqrt {bc} + c) \cr&\;\;\;\;\;\;+ (c - 2\sqrt {ac} + a) \ge 0 \cr 
& \Leftrightarrow {(\sqrt a - \sqrt b )^2} + {(\sqrt b - \sqrt c )^2} + {(\sqrt c - \sqrt a )^2} \ge 0(dung) \cr} \)

Dấu “=” xảy ra khi và chỉ khi a = b = c.

Cách khác:

Áp dụng bất đẳng thức Cô- si cho hai số không âm ta có:

\(\begin{array}{l}a + b \ge 2\sqrt {ab} \\b + c \ge 2\sqrt {bc} \\c + a \ge 2\sqrt {ca} \end{array}\)

Lấy vế cộng vế các bất đẳng thức trên ta được:

\(\begin{array}{l}a + b + b + c + c + a \ge 2\sqrt {ab}  + 2\sqrt {bc}  + 2\sqrt {ca} \\ \Leftrightarrow 2\left( {a + b + c} \right) \ge 2\left( {\sqrt {ab}  + \sqrt {bc}  + \sqrt {ca} } \right)\\ \Leftrightarrow a + b + c \ge \sqrt {ab}  + \sqrt {bc}  + \sqrt {ca} \end{array}\)

Suy ra điều phải chứng minh.

Dấu “=” xảy ra khi và chỉ khi a= b = c .


LG b

a2b+ b2c+ c2a≥ abc(a + b +c) với mọi a,b,c ∈ R

Khi nào có đẳng thức?

Lời giải chi tiết:

Ta có:

a2b+ b2c+ c2a≥ abc(a + b +c)

⇔ 2a2b2 + 2b2c2 + 2c2a2 ≥ 2abc(a + b +c)

⇔ (a2b2 – 2a2bc+ a2c2) + (a2c2 – 2c2ab +b2c2) +(a2b2 – 2b2ac +b2c2) ≥ 0

⇔  (ab – ac)2 + (ac – bc)2 + (ab – bc)2 ≥ 0 (luôn đúng)

Dấu “=” xảy ra khi và chỉ khi a = b = c hoặc 2 trong 3 số a, b, c = 0.

Cách khác:

Với các số thực a, b, c ta luôn có: a2 ≥ 0; b2 ≥ 0; c2 ≥ 0

Do đó a2b2 ≥ 0; b2c2 ≥ 0; c2a2 ≥ 0

Áp dụng bđt Cô – si ta có:

\(\begin{array}{l}{a^2}{b^2} + {b^2}{c^2} \ge 2\sqrt {{a^2}{b^2}.{b^2}{c^2}}  = 2{b^2}ac\\{b^2}{c^2} + {c^2}{a^2} \ge 2\sqrt {{b^2}{c^2}.{c^2}{a^2}}  = 2{c^2}ab\\{c^2}{a^2} + {a^2}{b^2} \ge 2\sqrt {{c^2}{a^2}.{a^2}{b^2}}  = 2{a^2}bc\end{array}\)

Cộng vế với vế các bđt trên ta được:

\(\begin{array}{l}{a^2}{b^2} + {b^2}{c^2} + {b^2}{c^2} + {c^2}{a^2} + {c^2}{a^2} + {a^2}{b^2}\\ \ge 2{b^2}ac + 2{c^2}ab + 2{a^2}bc\\ \Leftrightarrow 2\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right)\\ \ge 2abc\left( {a + b + c} \right)\\ \Rightarrow {a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} \ge abc\left( {a + b + c} \right)\end{array}\)

Dấu = xảy ra khi \(a = b = c\) hoặc hai trong ba số bằng 0.

Bài giải tiếp theo
Bài 78 trang 155 SGK Đại số 10 nâng cao
Bài 79 trang 155 SGK Đại số 10 nâng cao
Bài 80 trang 155 SGK Đại số 10 nâng cao
Bài 81 trang 155 SGK Đại số 10 nâng cao
Bài 82 trang 155 SGK Đại số 10 nâng cao
Bài 83 trang 156 SGK Đại số 10 nâng cao
Bài 84 trang 156 SGK Đại số 10 nâng cao
Bài 85 trang 156 SGK Đại số 10 nâng cao
Bài 86 trang 156 SGK Đại số 10 nâng cao
Bài 87 trang 156 SGK Đại số 10 nâng cao

Video liên quan



Bài học liên quan

Từ khóa