Bài 6 trang 40 SGK Hình học 10

Giải bài 6 trang 40 SGK Hình học 10. Cho hình vuông ABCD


Đề bài

Cho hình vuông \(ABCD\). Tính: \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {BA} } \right), \, \sin\left( {\overrightarrow {AC} ,\overrightarrow {BD} } \right),\)\(\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right).\)

Phương pháp giải - Xem chi tiết

Cho hai vecto \(\overrightarrow a ,\;\overrightarrow b (khác \overrightarrow 0). \) Từ một điểm \(O\) bất kì ta vẽ  \(\overrightarrow {OA}  = \overrightarrow a ,\;\overrightarrow {OB}  = \;\overrightarrow b .\) 

Khi đó \(\widehat {AOB}\) với số đo từ \(0^0\) đến \(180^0\) được gọi là góc giữa hai vecto \(\overrightarrow a ,\;\overrightarrow b. \)

Kí hiệu: \(\left( {\overrightarrow a ,\;\overrightarrow b } \right).\)

Lời giải chi tiết

Ta có :

\( \eqalign{
& \cos \left( {\overrightarrow {AC} ,\overrightarrow {BA} } \right)  =\cos \widehat{CAx} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \cos {135^0} = {{\sqrt 2 } \over 2}, \cr & \sin\left( {\overrightarrow {AC} ,\overrightarrow {BD} } \right) =\sin \widehat{COD}\cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sin {90^0} = 1, \cr & \cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right) = \cos {180^0} =- 1 .\cr} \)